The Real-Quaternionic Indicator and it's relation with the Frobenius-Schur indicator

Ran Cui

Broad Institute and MIT

AMS Special Session on Recent Developments in Automorphic Forms and Representation Theory New York, May 2017 The Real-Quaternionic Indicator

Ran Cui

A Brief History
Definitions
Existing Results

and δ

When are they the same?

Main Theorem

SL(2, R)
Proof of the
Hermitian case

nf-Dim'l Case

Outline

A Brief History

Definitions Existing Results

 ε and δ

When are they the same? When are they different?

Main Theorem

Theorem

 $SL(2,\mathbb{R})$

Proof of the Hermitian case

Inf-Dim'l Case

Bonus Slides

The Real-Quaternionic Indicator

Ran Cui

A Brief History

Definitions Existing Results

 ε and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Case

Definitions

Definition (Frobenius-Schur indicator)

 (π, V) irrep of G, and $\pi \cong \pi^*$. Then $\exists B : V \times V \to \mathbb{C}$, which is G-inv and bilinear. Define:

$$\varepsilon(\pi) = \begin{cases}
1 & B \text{ symm} \\
-1 & B \text{ skew-symm}
\end{cases}$$

The Real-Quaternionic

Ran Cui

A Brief History

Definitions
Existing Result

and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Case

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Cas

Bonus Slides

Definition (Frobenius-Schur indicator)

 (π, V) irrep of G, and $\pi \cong \pi^*$. Then $\exists B : V \times V \to \mathbb{C}$, which is G-inv and bilinear. Define:

$$arepsilon(\pi) = egin{cases} 1 & B ext{ symm} \ -1 & B ext{ skew-symm} \end{cases}$$

Definition (Real-Quaternionic indicator)

 (π, V) irrep of G, and $\pi \cong \overline{\pi}$. There exists $\mathcal{J}: V \to V$, which is G-inv, conj linear, and non-zero, such \mathcal{J} satisfies $\mathcal{J}^2 = c \cdot I$ for $c \in \mathbb{R}^*$. Define:

$$\delta(\pi) = sgn(c)$$

Definitions

Definition (Frobenius-Schur indicator)

 (π, V) irrep of G, and $\pi \cong \pi^*$. Then $\exists B : V \times V \to \mathbb{C}$, which is G-inv and bilinear. Define:

$$\varepsilon(\pi) = \begin{cases} 1 & B \text{ symm} \\ -1 & B \text{ skew-symm} \end{cases}$$

Definition (Real-Quaternionic indicator)

 (π, V) irrep of G, and $\pi \cong \overline{\pi}$. There exists $\mathcal{J}: V \to V$, which is G-inv, conj linear, and non-zero, such \mathcal{J} satisfies $\mathcal{J}^2 = c \cdot I$ for $c \in \mathbb{R}^*$. Define:

$$\delta(\pi) = \mathsf{sgn}(c)$$

$$\delta(\pi) = 1$$
 iff π is of real type;

$$\delta(\pi) = -1$$
 iff π is of quaternionic type.

The Real-Quaternionic Indicator

Ran Cui

A Brief History

Definitions
Existing Results

and δ

When are they the same?
When are they

Main Theorem

SL(2, \mathbb{R}) Proof of the Hermitian case

nf-Dim'l Case

Existing Results

Theorem (Bourbaki)

 $G(\mathbb{C})$ conn red cx Lie group, π finite-dim'l and $\pi \cong \pi^*$. Then

$$\varepsilon(\pi) = \chi_{\pi}(z_{\rho})$$

 $\chi_{\pi} = central \ character, \ z_{
ho} = \exp(2\pi i
ho^{\lor})$

The Real-Quaternionic Indicator

Ran Cui

A Brief History

Existing Results

and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Case

Theorem (Bourbaki)

 $G(\mathbb{C})$ conn red cx Lie group, π finite-dim'l and $\pi\cong\pi^*$. Then

$$\varepsilon(\pi) = \chi_{\pi}(z_{\rho})$$

 $\chi_{\pi} = central \ character, \ z_{\rho} = \exp(2\pi i \rho^{\vee})$

Results about δ :

N. Iwahori 1958 "On Real Irreducible Reps of Lie Algebras"

Reduced the problem to fundamental representations.

The Real-Quaternionic

Ran Cui

A Brief History

Existing Results

- C

and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Cas

Existing Results

and δ When are they th

When are they the same?
When are they different?

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Cas

Bonus Slides

Theorem (Bourbaki)

 $G(\mathbb{C})$ conn red cx Lie group, π finite-dim'l and $\pi\cong\pi^*$. Then

$$\varepsilon(\pi) = \chi_{\pi}(z_{\rho})$$

 $\chi_{\pi} = central \ character, \ z_{\rho} = \exp(2\pi i \rho^{\vee})$

Results about δ :

- N. Iwahori 1958 "On Real Irreducible Reps of Lie Algebras"
 Reduced the problem to fundamental representations.
- ▶ Jacques Tits 1967 "Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen" Listed values of $\delta(\lambda)$, where λ is a fundamental representations of simple Lie groups.

Outline

A Brief History
Definitions
Existing Results

 ε and δ

When are they the same? When are they different?

Main Theorem

Theorem

 $SL(2,\mathbb{R})$

Proof of the Hermitian case

Inf-Dim'l Case

Bonus Slides

The Real-Quaternionic Indicator

Ran Cui

A Brief History Definitions Existing Results

 ε and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Cas

When are they the same?

Theorem

Let G be a compact Lie group, and (π, V) an irrep of G, and $\pi^* \cong \pi$, $\overline{\pi} \cong \pi$. Then $\delta(\pi) = \varepsilon(\pi)$.

The Real-Quaternionic Indicator

Ran Cui

A Brief History Definitions Existing Results

and δ

When are they the same?

lifferent?

Main Theorem

 $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Case

When are they the same?

Theorem

Let G be a compact Lie group, and (π, V) an irrep of G, and $\pi^* \cong \pi$, $\overline{\pi} \cong \pi$. Then $\delta(\pi) = \varepsilon(\pi)$.

Proof.

 π is unitary $\Rightarrow \exists$ *G*-inv positive-definite Hermitian form \langle , \rangle π is self-dual $\Rightarrow \exists$ *G*-inv bilinear form *B*

The Real-Quaternionic Indicator

Ran Cui

A Brief History Definitions Existing Results

and δ

When are they the same?

Aain Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Case

Let G be a compact Lie group, and (π, V) an irrep of G, and $\pi^* \cong \pi$, $\overline{\pi} \cong \pi$. Then $\delta(\pi) = \varepsilon(\pi)$.

Proof.

 π is unitary $\Rightarrow \exists G$ -inv positive-definite Hermitian form \langle , \rangle π is self-dual $\Rightarrow \exists G$ -inv bilinear form B Define a map $\mathcal{J}: V \to V$ such that:

$$B(v, w) = \langle v, \mathcal{J}(w) \rangle, \quad \forall v, w \in V$$

 \mathcal{J} is G-inv, conjugate linear and non-zero $\Rightarrow \mathcal{J}^2(v) = cv, \forall v \in V \text{ for some } c \in \mathbb{R}^*.$

The Real-Quaternionic Indicator

Ran Cui

When are they the same?

Theorem

Let G be a compact Lie group, and (π, V) an irrep of G, and $\pi^* \cong \pi$, $\overline{\pi} \cong \pi$. Then $\delta(\pi) = \varepsilon(\pi)$.

Proof.

 π is unitary $\Rightarrow \exists$ *G*-inv positive-definite Hermitian form \langle , \rangle π is self-dual $\Rightarrow \exists$ *G*-inv bilinear form *B* Define a map $\mathcal{J}: V \to V$ such that:

$$B(v, w) = \langle v, \mathcal{J}(w) \rangle, \quad \forall v, w \in V$$

 \mathcal{J} is G-inv, conjugate linear and non-zero $\Rightarrow \mathcal{J}^2(v) = cv, \forall v \in V$ for some $c \in \mathbb{R}^*$. Short calculation $\Rightarrow \varepsilon(\pi)\delta(\pi) = sgn\left(\frac{\langle \mathcal{J}(v), \mathcal{J}(w) \rangle}{\langle w, v \rangle}\right)$ $\Rightarrow \varepsilon(\pi)\delta(\pi) = sgn\left(\frac{\langle \mathcal{J}(v), \mathcal{J}(v) \rangle}{\langle v, v \rangle}\right) = 1$

When are they different?

Consider $G = SL(2, \mathbb{R})$, (π, V) is the rep with natural action of $SL(2, \mathbb{R})$ on a 2-dim complex vector space.

The Real-Quaternionic Indicator

Ran Cui

Brief History
Definitions
Existing Results

and δ

When are they different?

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Case

When are they different?

Consider $G = SL(2, \mathbb{R})$, (π, V) is the rep with natural action of $SL(2, \mathbb{R})$ on a 2-dim complex vector space.

RQ indicator

Naturally, this is of real type. Therefore $\delta(\pi) = 1$.

The Real-Quaternionic Indicator

Ran Cui

A Brief History
Definitions
Existing Results

and δ

When are they the

When are they different?

Main Theorem
Theorem

 $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Case

When are they different?

Consider $G = SL(2,\mathbb{R})$, (π, V) is the rep with natural action of $SL(2,\mathbb{R})$ on a 2-dim complex vector space.

RQ indicator

Naturally, this is of real type. Therefore $\delta(\pi) = 1$.

FS indicator

Consider bilinear form:

$$B(v,w) = v^T \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} w$$

It is skew-symmetric B(v, w) = -B(w, v) and G-invariant

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix}^T$$

Therefore $\varepsilon(\pi) = -1$.

Outline

A Brief History
Definitions
Existing Results

arepsilon and δ

When are they the same? When are they different?

Main Theorem

Theorem $SL(2,\mathbb{R})$

Proof of the Hermitian case

Inf-Dim'l Case

Bonus Slides

The Real-Quaternionic Indicator

Ran Cui

A Brief History
Definitions
Existing Results

and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Case

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the
Hermitian case

Inf-Dim'l Case

Bonus Slides

Theorem (C.)

Let $(\pi, V) \cong (\overline{\pi}, \overline{V})$ be finite-dim'l irrep a real reductive Lie group G, then

- 1. π Hermitian $\Rightarrow \delta(\pi) = \varepsilon(\pi)\chi_{\pi}(x^2)$
- 2. π non-Hermitian $\delta(\pi) = \varepsilon(\widetilde{\pi})\chi_{\pi}(x^2)$, where $\widetilde{\pi} = \operatorname{Ind}_G^{\gamma_G} \pi$

x is the "strong real form" of G, which means $Ad(x) = \theta$, $x^2 \in Z(G)$, θ is the Cartan involution of G. ${}^{\gamma}G$ is a extended group of G.

$$SL(2,\mathbb{R})$$

Let $G = SL(2, \mathbb{R})$, the Cartan involution of $SL(2, \mathbb{R})$ is

$$\theta(g) = (g^T)^{-1}$$

The strong real form of $SL(2,\mathbb{R})$ is

$$x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Note $x^2 = -I$

$$1 = \delta(\pi) = \varepsilon(\pi)\chi_{\pi}(x^2) = -1 \cdot -1$$

The Real-Quaternionic Indicator

Ran Cui

Brief History
Definitions
Existing Results

and δ

When are they the same?
When are they

Main Theorem

SL(2, ℝ)
Proof of the

Hermitian case

... 5.... . 605

π is Hermitian

Proof of main theorem

Let \langle,\rangle denote a G-invariant Hermitian form on V , B denote a G-invariant bilinear form.

Define $\mathcal{J}:V\to V$ like before:

$$B(v, w) = \langle v, \mathcal{J}(w) \rangle$$

The Real-Quaternionic Indicator

Ran Cui

Brief History
Definitions
Existing Results

 ϵ and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Cas

π is Hermitian

Proof of main theorem

Let \langle,\rangle denote a G-invariant Hermitian form on V, B denote a G-invariant bilinear form.

Define $\mathcal{J}: V \to V$ like before:

$$B(v, w) = \langle v, \mathcal{J}(w) \rangle$$

Again we have

$$\varepsilon(\pi)\delta(\pi) = sgn\left(\frac{\langle \mathcal{J}(v), \mathcal{J}(w) \rangle}{\langle w, v \rangle}\right)$$

The Real-Quaternionic Indicator

Ran Cui

A Brief History Definitions Existing Results

and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Cas

π is Hermitian

The Real-Quaternionic

Ran Cui

A Brief History
Definitions
Existing Results

 ϵ and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the
Hermitian case

Inf-Dim'l Cas

Bonus Slides

Proof of main theorem

Let \langle,\rangle denote a G-invariant Hermitian form on V, B denote a G-invariant bilinear form.

Define $\mathcal{J}: V \to V$ like before:

$$B(v,w) = \langle v, \mathcal{J}(w) \rangle$$

Again we have

$$\varepsilon(\pi)\delta(\pi) = sgn\left(\frac{\langle \mathcal{J}(v), \mathcal{J}(w) \rangle}{\langle w, v \rangle}\right)$$

Now what?

and δ

When are they the same?

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the
Hermitian case

Inf-Dim'l Case

Bonus Slides

Ordinary inv Hermitian form satisfies:

$$\langle \pi(g)v, w \rangle = \langle v, \pi(g^{-1})w \rangle$$

 $\sigma=$ real structure, a $\sigma-$ invariant Hermitian form satisfies:

$$\langle \pi(g)v, w \rangle^{\sigma} = \langle v, \sigma(\pi(g^{-1}))w \rangle^{\sigma}$$

 σ_0 given by the real form $G \rightsquigarrow \langle, \rangle$ σ_c given by the compact real form of $G(\mathbb{C}) \rightsquigarrow \langle, \rangle^c$.

A Brief History
Definitions
Existing Results

and δ

When are they the same?
When are they

Main Theorem
Theorem

 $SL(2,\mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Cas

Bonus Slides

Proposition (Adams, van Leeuwen, Trapa, Vogan)

Let G be equal rank, π is finite-dim'l. Let \langle , \rangle^c be a pos-def c-inv Hermiatian form. The form \langle , \rangle defined as:

$$\langle v, w \rangle := \mu^{-1} \langle x \cdot v, w \rangle^c$$

is an ordinary Hermitian form.

x is the "strong real form", i.e., $Ad(x) = \theta$, Cartan involution, and $x^2 \in Z(G)$. μ is a square root of $\chi_{\pi}(x^2)$

Brief History
Definitions
Existing Results

and δ

When are they the same?
When are they

Theorem $SL(2, \mathbb{R})$ Proof of the

Inf Dim'l Case

Rewrite
$$\varepsilon(\pi)\delta(\pi) = sgn\left(\frac{\langle \mathcal{J}(v), \mathcal{J}(w)\rangle}{\langle w, v\rangle}\right)$$
 in terms of \langle, \rangle^c :

$$\varepsilon(\pi)\delta(\pi) = \operatorname{sgn}\left(\mu^{-2}\frac{\langle x\cdot \mathcal{J}(v),\mathcal{J}(w)\rangle^c}{\overline{\langle x\cdot v,w\rangle^c}}\right)$$

Proof of the

Hermitian case

Rewrite $\varepsilon(\pi)\delta(\pi) = sgn\left(\frac{\langle \mathcal{J}(v), \mathcal{J}(w) \rangle}{\langle w, v \rangle}\right)$ in terms of \langle , \rangle^c :

$$\varepsilon(\pi)\delta(\pi) = \operatorname{sgn}\left(\mu^{-2}\frac{\langle x\cdot \mathcal{J}(v),\mathcal{J}(w)\rangle^c}{\overline{\langle x\cdot v,w\rangle^c}}\right)$$

G equal $rk \Rightarrow x \in G \Rightarrow x \cdot \mathcal{J}(v) = \mathcal{J}(x \cdot v)$.

and δ

When are they the same?
When are they

Main Theorem
Theorem $SL(2, \mathbb{R})$ Proof of the

Hermitian case

Bonus Slides

Rewrite $\varepsilon(\pi)\delta(\pi) = sgn\left(\frac{\langle \mathcal{J}(v), \mathcal{J}(w) \rangle}{\langle w, v \rangle}\right)$ in terms of \langle, \rangle^c :

$$\varepsilon(\pi)\delta(\pi) = \operatorname{sgn}\left(\mu^{-2} \frac{\langle x \cdot \mathcal{J}(v), \mathcal{J}(w) \rangle^{c}}{\langle x \cdot v, w \rangle^{c}}\right)$$

G equal
$$\mathsf{rk} \Rightarrow \mathsf{x} \in \mathsf{G} \Rightarrow \mathsf{x} \cdot \mathcal{J}(\mathsf{v}) = \mathcal{J}(\mathsf{x} \cdot \mathsf{v}).$$

Set $\mathsf{w} = \mathsf{x} \cdot \mathsf{v} \Rightarrow \mathsf{RHS} = \mathsf{sgn}(\mu^{-2}) \Rightarrow$
$$\delta(\pi) = \varepsilon(\pi)\mu^2 = \varepsilon(\pi)\chi_\pi(\mathsf{x}^2)$$

 θ is outer, the strong real form $x \in {}^{\gamma}G \setminus G$, where γ is distinguished involution in the inner class of θ .

Proposition

Suppose G is unequal rank, $\pi \cong \pi^* \cong \overline{\pi} \cong \pi^h$ then

- 1. π extends irreducibly to π_+
- 2. $\pi_{+} \cong (\pi_{+})^{*} \cong \overline{\pi_{+}} \cong (\pi_{+})^{h}$
- 3. $\exists \langle , \rangle$ and \langle , \rangle^c on π_+ . They admit the same equation as before:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mu^{-1} \langle \mathbf{x} \cdot \mathbf{v}, \mathbf{w} \rangle^{c}$$

Use the same $\mathcal J$ and similar argument to show $\delta(\pi) = \varepsilon(\pi) \chi_{\pi}(x^2).$

Outline

A Brief History

Definitions

Existing Results

ε and δ

When are they the same? When are they different?

Main Theorem

Theorem

 $SL(2,\mathbb{R})$

Proof of the Hermitian case

Inf-Dim'l Case

Bonus Slides

The Real-Quaternionic Indicator

Ran Cui

A Brief History Definitions

 ϵ and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the
Hermitian case

Inf-Dim'l Case

Brief History Definitions Existing Results

and δ

When are they the same?
When are they

lain Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Case

Bonus Slides

Similar arguments, using \langle,\rangle^c pos-def on Lowest K-types.

Theorem

Let G be equal rank real reductive algebraic group, (π, V) is an infinite-dim'l (\mathfrak{g}, K) -module with real infinitesimal character. Suppose irrep $\pi \cong \pi^* \cong \overline{\pi} \cong \pi^h$, then

$$\delta(\pi) = \varepsilon(\pi)\chi_{\pi}(x^2)$$

Outline

A Brief History

Definitions
Existing Results

ε and δ

When are they the same? When are they different?

Main Theorem

Theorem

 $SL(2,\mathbb{R})$

Proof of the Hermitian case

Inf-Dim'l Case

Bonus Slides

The Real-Quaternionic Indicator

Ran Cui

A Brief History Definitions

 ϵ and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Case

The

A Brief History Definitions Existing Results

and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Cas

Bonus Slides

Theorem (Adams-Cui)

Let G be an equal rank semisimple group, (π, V) be a finite-dim'l irrep of G, and π is Hermitian. Suppose $h = \langle , \rangle$ be a G-invariant Hermitian form on V, then

$$sgn(h) = \mu^{-1}\Theta_{\pi}(x)$$

where x is the strong real form of G, μ is a square root of $\chi_{\pi}(x^2)$, Θ_{π} is the global character of π .

Proof

Setting:

 $\{v_1,\cdots,v_n\}$ basis of V consisting of T-weight vectors. $\{\lambda_1,\cdots,\lambda_n\}$ the corresponding T-weights.

The Real-Quaternionic Indicator

Ran Cui

A Brief History Definitions Existing Results

and δ

When are they the same?
When are they

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

Inf-Dim'l Cas

Setting:

 $\{v_1, \cdots, v_n\}$ basis of V consisting of T-weight vectors. $\{\lambda_1, \cdots, \lambda_n\}$ the corresponding T-weights.

Calculation:

We can define \langle , \rangle^c such that $\{v_i\}$ is orthonormal w.r.t. \langle , \rangle^c . Fact: we can assume $x \in T$, where $T = H^\theta$, H is a Cartan subgroup of G.

$$\begin{aligned} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle &= \mu^{-1} \langle \mathbf{x} \cdot \mathbf{v}_{i}, \mathbf{v}_{i} \rangle^{\mathbf{c}} = \mu^{-1} \lambda_{i}(\mathbf{x}) \\ \Rightarrow \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle^{2} &= \mu^{-2} \chi_{\pi}(\mathbf{x}^{2}) = 1 \Rightarrow \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle = \pm 1 \\ sgn(h) &= \sum_{i} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle = \sum_{i} \mu^{-1} \lambda_{i}(\mathbf{x}) = \mu^{-1} \Theta_{\pi}(\mathbf{x}) \end{aligned}$$

Thank you!

The Real-Quaternionic Indicator

Ran Cui

A Brief Histor Definitions Existing Results

 ε and δ

When are they the same?
When are they different?

Main Theorem

Theorem $SL(2, \mathbb{R})$ Proof of the Hermitian case

nf-Dim'l Case