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Abstract

If an irreducible complex representation is self-conjugate, then it’s ei-
ther “real” or “quaternionic” (coming from a real representation or a
quaternionic one). The Real-Quaternionic indicator is defined to be ±1
accordingly. This indicator has application to mathematical physics, and
many mathematicians have studied it. For instance, Iwahori [5] and
Jacuqes Tits [8] studied the indicator for finite-dimensional representa-
tions of Lie algebras. In this paper, we study the indicator for infinite-
dimensional representation of real reductive algebraic Lie groups. Our
main result is a relation between the Real-Quaternionic indicator and the
more familiar Frobenius-Schur indicator, which tells if the bilinear forms
on a self-dual representation is symmetric or skew-symmetric. The main
tool is the notion of c-invariant Hermitian form, originally developed in
[2] in the study of unitary representations. In particular, we give a closed
formula for the Real-Quaternionic indicator of a finite-dimensional self-
conjugate representation.

1 Introduction

The Real-Quaternionic indicator (Definition 2.5 and Definition 2.6) was intro-
duced by Iwahori in 1959 [5] as a tool for finding all real irreducible representa-
tions of a real Lie algebra. Jacuqes Tits gave a formula for the Real-Quaternionic
indicator for finite-dimensional representation [8], also see [6]. However, these
formulas are all case-by-case.

It is well known that the Real-Quaternionic indicator and the Frobenius-
Schur indicator agree for finite groups, and this generalizes as usual to compact
groups [4]. In this paper, we will give a new proof of this fact (Theorem 2.2).
The new proof clearly suggests the reason behind this equality is the existence
of a positive-definite invariant Hermitian form. This discovery urges us to focus
on invariant Hermitian forms. For non-unitary representations, the invariant
Hermitian forms are not positive-definite. So we turn our attention to the c-
invariant Hermitian form (Definition 3.10) which approximates positive-definite
Hermitian forms. From the relation between the ordinary invariant Hermitian
form and the c-invariant Hermitian form, we deduce a relation between the
two indicators in general. The main results of this paper are Theorem 3.11,
Theorem 3.15, and Theorem 3.22. For the convenience of interested reader,
we single out the finite-dimensional case in Section 4, and using the existing
result for the Frobenius-Schur indicator to give a closed formula for the Real-
Quaternionic indicator (Theorem 4.3).
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2 Compact Lie Groups

In this self-contained section, we present the basic case of representations of
compact groups. This serves as motivation for the general case.

To lay a solid foundation for the proofs in this paper, we will first give the
definitions of some basic notions.

2.1 Definitions

In this section G will denote a compact group, and (π, V ) a finite-dimensional
irreducible representation of G. Basic representation theory tells us that π
is finite-dimensional and unitary. We are interested in some operations on π,
particularly, the dual, the conjugate and the Hermitian dual of π.

Definition 2.1 (Dual Representation). The dual representation of π is the
representation π∗ on the dual vector space V ∗ = Hom(V,C). The group G acts
on V ∗ by

π∗(g)(f) = f ◦ π(g−1) ∀g ∈ G, f ∈ V ∗.
A representation is said to be self-dual if π ∼= π∗.

Remark 1. By this definition, it is easy to see that the double dual of a repre-
sentation is canonically isomorphic to itself.

π∗∗ ∼= π.

Definition 2.2 (Conjugate Representation). The conjugate representation of
π is the representation π on the conjugate vector space V = C ⊗C,τ V where
τ : C→ C is a complex conjugation. The group G acts on V by

π(g)(z ⊗C,τ v) = z ⊗C,τ π(g)v ∀g ∈ G, z ∈ C, v ∈ V.

A representation is said to be self-conjugate if π ∼= π.

Definition 2.3 (Hermitian Dual Representation). The Hermitian dual of π is
the representation πh on the Hermitian dual vector space

V h = {ξ : V → C|ξ(zv + yw) = zξ(v) + yξ(w),∀z, y ∈ C; v, w ∈ V }.

The group G acts on V h by

πh(g)(ξ) = ξ ◦ π(g−1), ∀g ∈ G, ξ ∈ V h.

A representation is said to be Hermitian if π ∼= πh.

Remark 2. The representation (π, V ) being Hermitian is equivalent to the ex-
istence of a G invariant Hermitian form on V .

These three operations on a representation have the following relation:

Theorem 2.1. Any two of the three operations, dual, conjugate, and Hermitian
dual compose into the third.

(π, V ) = ([πh]∗, [V h]∗) = ([π∗]h, [V ∗]h)

(π∗, V ∗) = ([πh], [πh]) = ([π]h, [V ]h)

(πh, V h) = ([π∗], [π∗]) = ([π]∗, [V ]∗)
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Remark 3. The above theorem foreshadows the relation among the Real Quater-
nionic indicator (which is defined for self-conjugate representations), the Frobe-
nius Schur indicator (which is defined for self-dual representations), and the
invariant Hermitian form of π.

Definition 2.4 (Frobenius-Schur Indicator). Suppose (π, V ) is an irreducible
self-dual representation of G. Then there exists bilinear form B on V that is
invariant under the action of G. The Frobenius-Schur indicator (also called the
ε-indicator) is defined to be:

ε(π) =

{
1 B is symmetric

−1 B is skew-symmetric
.

Remark 4. The self-duality of π implies there exists invariant bilinear forms
on V . One of these bilinear forms can be easily defined using the isomorphism
between π and π∗, and any other invariant bilinear form on V is a complex
multiple of it. Using Schur’s Lemma, it is straightforward to prove that any such
form must be either symmetric or skew-symmetric. For a fixed representation
π, the invariant bilinear form is unique up to a complex scalar. Therefore the
ε-indicator is well defined.

Definition 2.5 (Real-Quaternionic Indicator). Suppose (π, V ) is an irreducible
self-conjugate representation of G. Then there exists a non-zero G invariant
conjugate-linear map J : V → V . For such a map, there exists c ∈ R∗ such
that J 2(v) = cv for all v ∈ V . The Real-Quaternionic indicator (also called the
δ-indicator) is defined to be:

δ(π) = sgn(c).

Remark 5. The isomorphism between π and π canonically defines a non-zero
G invariant conjugate-linear map J . Any other map that satisfies the same
conditions will be a complex multiple of J . Since J is conjugate linear, the
sign of (zJ )2 for z ∈ C is the same as the sign of J 2. Therefore the δ-indicator
is well defined.

We give an equivalent definition to illustrate the origin of the name “Real-
Quaternionic indicator”.

Definition 2.6. Let (π, V ) be an irreducible self-conjugate representation of
G. We say (π, V ) is of real type if there exists an irreducible real representation
(π0,W ) of G with W a real vector space such that π ∼= π0 ⊗ C; we say (π, V )
is of quaternionic type if there exists an irreducible quaternionic representation
(ρ, U) with U an H vector space such that π ∼= ResHCρ (here Res denotes the
restriction of scalars). The Real-Quaternionic indicator δ is defined to be:

δ(π) =

{
1 π is of real type

−1 π is of quaternionic type
.

The main theorem of this section is the following.

Theorem 2.2. Let G be a compact Lie group and (π, V ) an irreducible self-
conjugate representation of G. Then δ(π) = ε(π).
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Proof. Recall that any irreducible representation of a compact group is unitary,
so there exists a non-degenerate G invariant positive-definite Hermitian form
〈, 〉 on V . Moreover, π is Hermitian, i.e., π ∼= πh. Together with the assumption
π ∼= π and Theorem 2.1, we conclude π ∼= π∗, i.e., π is self-dual. The ε-indicator
on π is therefore defined.

In order to prove the equality in question, we first define a map J : V → V .
The self-duality of π ensures the existence of a non-degenerate, G invariant
bilinear form B on V . Define J by the condition:

B(v, w) = 〈v,J (w)〉, ∀v, w ∈ V.

It is easy to verify that J is conjugate-linear, G-equivariant and non-zero. By
definition, there exists c ∈ R∗ such that J 2(v) = cv for all v ∈ V .

The following computation is the prototype for many proofs in this paper.

〈J (v),J (w)〉 = B(J (v), w) = ε(π)B(w,J (v)) = ε(π)〈w,J 2(v)〉
= ε(π)〈w, cv〉 = c · ε(π)〈w, v〉 ∀v, w ∈ V

This implies:

ε(π)δ(π) = ε(π)sgn(c) = sgn

(
〈J (v),J (w)〉
〈w, v〉

)
∀v, w ∈ V where 〈v, w〉 6= 0.

Set v = w, the right hand side is 1 because 〈, 〉 is positive-definite. Therefore
ε(π) = δ(π).

Remark 6. The reader might have noticed that we only used the compactness of
the group to deduce the unitarity of the representation π. This proof can be done
whenever the representation is unitary and the two indicators are well defined.
In particular, if G is a real reductive Lie group and π is an irreducible self-
conjugate representation of G, then ε(π) = δ(π). The contra-positive statement
gives an interesting non-unitarity condition.

3 Real Reductive Algebraic Groups

In this section, G will denote a real reductive algebraic group.

Definition 3.1 (Real Reductive Algebraic Group). A real reductive algebraic
group G (which we will call “real group” for short) is the group of real points
of a complex connected reductive algebraic group. In other words, given a real
form σ of a complex group G(C), G = G(R, σ) = G(C)σ.

Our goal is to establish a relation between the ε-indicator and the δ-indicator
as we did in the compact case. Historically, the Frobenius-Schur indicator, i.e.,
the ε-indicator, is better understood than the δ-indicator. It has been defined
in a larger setting also, for example, it is defined and studied for p-adic groups
[7]. Building this bridge between the two gives a better understanding of the
δ-indicator. For instance, we are able to give a closed formula for the δ-indicator
of finite-dimensional self-conjugate representations of G using this relation and
an existing formula for the ε-indicator.

It is also worth pointing out that because the result for compact groups is
very well known, people often confuse the Real-Quaternionic indicator with the
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Frobenius-Schur indicator or think that they are the same. The generic names
researchers have been giving the Real-Quaternionic indicator didn’t help with
the misunderstanding either.

3.1 Motivational Examples

As a first example, We want to illustrate to the reader that the two indicators
is not equal in general.

Example 3.1. Let G = SL(2,R) and (π, V ) be the 2-dimensional irreducible
representation ofG with the natural action of SL(2,R) on a 2-dimensional vector
space. It is clear that this action preserves the 2-dimensional real vector space
defined by restricting scalars of V . By Definition 2.6, π is of real type, therefore
δ(π) = 1. On the other hand, the action of G preserves a skew-symmetric
bilinear form:[

a b
c d

]
·
[

0 1
−1 0

]
·
[
a b
c d

]T
=

[
0 1
−1 0

]
, ∀

[
a b
c d

]
∈ SL(2,R). (1)

By Definition 2.4, ε(π) = −1.

Though not equal in general, the two indicators are very closely related. In
most cases, the two indicators are related by a strong real form representing the
real group G. See Definition 3.12 for the definition of strong real forms. The
following example will hopefully provide some intuition for this relation.

Example 3.2. From basic Lie theory, we know that G1 = SL(2,R) and G2 =
SU(2) are two different real forms of the complex Lie group G = SL(2,C). Let
π be the 2-dimensional irreducible representation of G with the natural action.
Let π1 = π|G1

and π2 = π|G2
.

It is easy to verify that Equation (1) holds for all matrices

[
a b
c d

]
∈ SL(2,C).

This allows us to conclude ε(π) = ε(π1) = ε(π2) = −1. It turns out that the
ε-indicator is independent of real forms in general.

On the other hand, since SL(2) is compact, Theorem 2.2 implies δ(π2) =
ε(π2) = −1. We know from Example 3.1 that δ(π1) = 1. This computation
shows that the δ-indicator is sensitive to real forms.

This crucial difference between the two indicators suggests that they might
be related by the real form representing G1. The theory of classification of real
forms hints that a natural place to look is the Cartan involution of SL(2,R):

θ(g) = (gT )−1, ∀g ∈ SL(2,R).

Let x =

[
0 1
−1 0

]
, then θ = Ad(x) on SL(2,R). Since θ is an involution of G1,

x2 ∈ Z(G1). Let χπ1
be the central character of π1, we notice χπ1

(x2) = −1.
Therefore

δ(π1) = χπ1
(x2)ε(π1). (2)

The Equation (2) is a special case of a very general fact (Theorem 3.11).
The factor x represents the difference between the ordinary invariant Hermitian
form (which is not necessarily positive-definite) and the c-invariant Hermitian
form (which is positive-definite).
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Recall ε(π) = δ(π) for π unitary. The reason for this equality is that the or-
dinary Hermitian form is positive-definite hence it coincides with the c-invariant
Hermitian form, meaning that χπ(x2) = 1.

We will give a definition for (g0,K)-modules and summarize the Langlands
classification. If you are familiar with (g0,K)-modules and know that one can
describe them using parameters on the Cartan subgroup (that’s the Langlands
classification), then you may wish to skip the next two subsection and come
back to it later. If not, you may still want to come back when needed.

3.2 Definitions

We work within the setting of (g0,K)-modules where our tools work the best
and the infinite-dimensionality does not cause too much trouble.

Let g0 denote the real Lie algebra of G and g = g0 ⊗ C its complexifica-
tion. Fix once and for all a choice of maximal compact subgroup K ⊂ G, the
complexification of K is denoted K(C).

Definition 3.2. A (g,K)-module is a pair (π, V ) with V a complex vector space
and π a map

π : g ∪K → End(V )

satisfying

1. π|g is a complex linear Lie algebra representation, and π|K is a group
representation;

2. every vector v ∈ V is K-finite, i.e. dim〈π(K)v〉 <∞

3. the differential of the action of K is equal to the restriction to k0 of the
action of g;

4. π(k)(π(X)v) = π(Ad(k)X)(π(k)v), ∀k ∈ K,X ∈ g, v ∈ V

A (g,K)-module V is called admissible if allK-types are of finite multiplicity.
A morphism of (g,K)-modules is a linear map intertwining both the action

of K and of g.
Similarly, we can define (g0,K)-modules

Definition 3.3 (Definition 2.10 [2]). A (g0,K)-module is a complex vector
space V that is at the same time a representation of K and of the real Lie
algebra g0, subject to the conditions in Definition 3.2 with g replaced by g0.

Remark 7. A (g0,K)-module (π, V ) is naturally a (g,K)-module, with the ac-
tion of g on V defined as:

(X ⊗ z) · v = zX · v, ∀X ∈ g0.

This extension defines an equivalence of categories from (g0,K)-modules to
(g,K)-modules.

Theorem 3.1. [2, Corollary 2.18] Let (π, V ) be a (g,K)-module. We can
extend π to a (g,K(C))-module such that the compatibility conditions in Defini-
tion 3.2 are satisfied. This extension defines an equivalence of categories from
(g,K)-modules to (g,K(C))-modules.
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Definition 3.4 (K-Finite Dual Module). If (π, V ) is a (g,K)-module, set

V ∨ = {f : V → C|dim〈π∨(K)f〉 <∞ }

here π∨(k) acts by the algebraic dual representation,

(π∨(k)f)(v) = f(π(k−1)v), ∀k ∈ K

and
(π∨(X)f)(v) = f(−π(X)v), ∀X ∈ g.

(π∨, V ∨) is called the dual module.

Remark 8.

1. The module (π∨, V ∨) is indeed a (g,K)-module, see Lemma 8.5.2 in [9].
Moreover, (π∨∨, V ∨∨) ∼= (π, V ) canonically.

2. Unlike the dual, “(g,K)-modules” does not have a canonical definition
for their conjugate or Hermitian dual, neither do they have a well de-
fined notion of the Real-Quaternionic indicator. The appropriate modules
to analyze are the (g0,K)-modules. We use the same definition for the
conjugate and Hermitian dual as in the finite-dimensional case, see Def-
inition 2.2 and Definition 2.3 with the word “representation” replace by
(g0,K)-module.

The definition of the Frobenius-Schur indicator and the Real-Quaternionic
indicator is basically unchanged. Here are the corresponding definitions in the
setting of (g0,K)-modules.

Definition 3.5 (ε-Indicator for (g0,K)-Modules). Suppose (π, V ) is an irre-
ducible self-dual (g0,K)-module. Then there exists bilinear form B on V that
is invariant under the action of the pair (g0,K). The Frobenius-Schur indicator
(also called the ε-indicator) is defined to be:

ε(π) =

{
1 B is symmetric

−1 B is skew-symmetric
.

Remark 9. The ε-indicator can be defined for (g,K)-modules in the same fash-
ion.

Definition 3.6 (δ-Indicator for (g0,K)-Modules). Suppose (π, V ) is an irre-
ducible self-conjugate (g0,K)-module. Then there exists a non-zero (g0,K)
invariant conjugate-linear map J : V → V . For such a map, there exists c ∈ R∗
such that J 2(v) = cv for all v ∈ V . The Real-Quaternionic indicator (also
called the δ-indicator) is defined to be:

δ(π) = sgn(c).

Remark 10. To prove that the two indicators are well-defined in this setting,
the most important tool is Schur’s Lemma. For this reason, we want (g0,K)-
modules to be admissible. Since we are assuming irreducibility, by the following
Theorem, we ensure that the (g0,K)-modules we work with are admissible and
Schur’s Lemma holds for them.

Theorem 3.2. Irreducible (g0,K)-modules are admissible (Definition 3.2).

This theorem is a classic result of Harish-Chandra’s.
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3.3 The Langlands Classification

We follow Section 6 of [2] closely.

Theorem 3.3. [2, Theorem 6.1] Suppose G is a real reductive algebraic group.
Then there exists a one-to-one correspondence between equivalent classes of irre-
ducible (g0,K)-modules and G-conjugacy classes of triples (“Langlands param-
eters”)

Γ = (H, γ,R+
iR)

subject to the following requirements.

1. The group H is a Cartan subgroup of G: the group of real points of a
maximal torus of G(C) defined over R.

2. The character γ is level one character of the ρabs double cover of H. Write
dγ ∈ h∗ for its differential ([2, Definition 5.1, Lemma 5.9]).

3. The roots R+
iR are a positive system for the imaginary roots of H in g.

4. The weight dγ is weakly dominant for R+
iR.

5. If α∨ is real and 〈dγ, α∨〉 = 0 then γq(mα) = +1 [2, Definition 5.7].

6. If β is simple for R+
iR and 〈dγ, β∨〉 = 0 then β is non-compact.

Two Langlands parameters are called equivalent if they are conjugate by
G. Attached to each equivalent class of Langlands parameter Γ is a standard
(g0,K)-module I(Γ), and it has a unique irreducible quotient module J(Γ). The
correspondence is Γ↔ J(Γ).

We will give a summary of Langlands’ construction of I(Γ). First we define
some notations. Let T = Hθ be the maximal compact subgroup of H. Write
h0 = t0 + a0 for the decomposition of the real Lie algebra of H into +1 and
−1 eigenspaces of θ. Define A = exp(a0) to be the identity component of the
maximal split torus of H. Note that the group A is isomorphic to its Lie algebra
and

H = T ×A.

Let MA = CentG(A) be the Langlands decomposition of the centralizer of A
in G. The compact group T is a compact Cartan subgroup of M , and the
parameters

Λ = (T, γ|T̃ , R
+
iR)

are Harish-Chandra parameters for a limit of discrete series representation
D(Λ) ∈ M̂ . Here T̃ is the ρiR double cover of T . For more information about
this cover, see [2]. Now let

ν = γ|A ∈ Â.

Choose a parabolic subgroup P = MAN of G such that ν is weakly dominant
for the weights of a in n. Then the standard representation I(Γ) can be realized
as

Iquo(Γ) = IndGP (D(Λ)⊗ ν ⊗ 1).

We also use Iquo(Γ) to denote the Harish-Chandra module of the standard rep-
resentation. This module has a unique irreducible quotient J(Γ). The corre-
spondence in Theorem 3.3 is Γ↔ J(Γ).
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The construction of the standard module inspires another expression of the
Langlands parameter. Given Langlands parameter Γ, let

Λ = (T, γ|T̃ , R
+
iR),

and
ν = γ|A ∈ HomC(a0,C) = a∗0.

Then Γ can also be written as (Λ, ν); thus I(Γ) = I(Λ, ν) and J(Γ) = J(Λ, ν).
We will be using (Λ, ν) rather than Γ for the rest of this paper.

Definition 3.7. We say a character ν of A is real if it is a real-valued character,
i.e.,

ν ∈ a∗0(R) = HomR(a0,R)

Proposition 3.4. Suppose Γ = (Λ, ν) is a Langlands parameter, then

1. The lowest K-types of I(Λ, ν) all have multiplicity one, and they all appear
in the Langlands quotient J(Λ, ν). ([2, page 78], [9, Theorem 4.3.16])

2. The infinitesimal character of J(Λ, ν) is real [9, Definition 5.4.11] if and
only if ν ∈ a∗0 is real (Definition 3.7).

For the main part of this paper, we will assume real infinitesimal character.
In the next subsection we will talk about different Hermitian forms, including
the ordinary invariant Hermitian forms and the c-invariant Hermitian forms,
and their relations.

3.4 Hermitian Forms

The relation between the ε-indicator and the δ-indicator fundamentally de-
pends on the relation between the ordinary invariant Hermitian form and the
c-invariant Hermitian form. In this section, we introduce these notions.

It is more convenient to work in the setting of (g,K(C))-modules instead of
(g0,K)-modules. So (π, V ) will denote a (g,K(C))-module in this subsection.

We will assume some basic knowledge of the classification of real forms. For
an introduction to the theory of real forms, one can refer to [6] and [2] for a
introduction of real forms.

Given a real form σ0 of G(C) corresponding to G, there is always a compact
form σc, unique up to conjugation by G. One can always choose σc such that
σ0 and σc commute. The involution θ = σ0 ◦ σc is the Cartan involution of G.
The involutions σ0 and σc are natual real structures on the pair (g,K(C)). The
notion of Hermitian form depends on the choice of a real structure on G(C) (for
details of real structure see [2, Section 8]). The usual real structure associated
to σ0 defines an ordinary Hermitian form; and σc defines a c-invariant Hermitian
form.

Recall the definition of Hermitian transpose.

Definition 3.8. If T ∈ Hom(V,W ), then the Hermitian transpose of T is

Th ∈ Hom(Wh, V h), Th(ξ)(v) = ξ(T (v)) v ∈ V, ξ ∈Wh.
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Definition 3.9. Suppose (π, V ) is a (g,K(C))-module and σ is a real structure
on the pair (g,K(C)) ([2, Definition 8.1]). The σ-Hermitian dual of (π, V ) is
denoted (πh,σ, V h) with

πh,σ : K → GL(V h), πh,σ(k) = [π(σ(k−1)]h, ∀k ∈ K(C)

πh,σ : g→ End(V h), πh,σ(X) = −[π(σ(X))]h, ∀X ∈ g.

The operator π(k)h is the Hermitian transpose of the operator π(k), similarly
for π(X)h.

Definition 3.10. [2, Definition 8.6] Suppose (π, V ) is a (g,K(C))-module, a
σ-Hermitian form on V is a Hermitian pairing 〈, 〉σ on V satisfying

〈X · v, w〉σ = 〈v,−σ(X) · w〉σ ∀X ∈ g, v, w ∈ V

〈k · v, w〉σ = 〈v, σ(k−1) · w〉σ ∀k ∈ K(C), v, w ∈ V

such a form may be identified with an intertwining operator

T ∈ Homg,K(π, πh,σ)

with the Hermitian condition: T = Th

Remark 11. A (g0,K)-module π is said to be Hermitian if and only if it admits
a σ0-Hermitian form.

Lemma 3.5. 1. A (g,K(C))-module (π, V ) has a σ-Hermitian form if and
only if π ∼= πh,σ.

2. A (g0,K)-module (π, V ) is Hermitian if and only if its extended (g,K(C))-
module is σ0-Hermitian.

In this paper, we are particularly interested in 〈, 〉0 and 〈, 〉c. We often call
the former the “ordinary Hermitian form” and the latter “c-invariant Hermitian
form”. It is the focus of this section to establish the connection between the two
invariant Hermitian forms. In order to do that, we first introduce the notion of
“extended pairs”.

Definition 3.11. [2, Definition 8.12] Let µ be an automorphism of the pair
(g,K(C)) with the property that µ2 = Ad(λ), λ ∈ K(C) is an inner automor-
phism of the pair (g,K(C)). The corresponding extended group is the extension

1→ K(C)→ µK(C)→ Z/2Z→ 1

with a specified generator µ1 mapping to 1 ∈ Z/2Z, and subject to the relation
µ1kµ

−1
1 = µ(k) for k ∈ K(C), and µ2

1 = λ. This extended group acts by
automorphisms on g, and we call (g, µK(C)) an extended pair.

Now we establish the connection between different σ-Hermitian forms. The
next Proposition lays the foundation of proving the main theorem of this paper.

Proposition 3.6. Suppose (π, V ) is an irreducible (g,K(C))-module, and V
has a non-degenerate σc-Hermitian form 〈, 〉σc , unique up to a real multiple.
Then:
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1. The following are equivalent:

(a) There is a non-degenerate σ0-Hermitian form 〈, 〉σ0 . It is unique up
to a real multiple.

(b) (π, V ) is isomorphic to its twist by θ:

D : (π, V ) ∼= (πθ, V )

In this case D is unique up to a complex multiple.

Assuming θ2 = Ad(λ) for some λ ∈ K(C), then (a) and (b) are also
equivalent to the following.

(c) The (g,K(C))-module V extends to a (g, θK(C))-module with θ act-
ing as D subject to the additional requirement that D2 = π(λ). If
any such extensions exist then there are exactly two. The operators
D differ by multiplication by ±1.

Assuming from now on the condition of (c) is satisfied, and the operator D is
chosen to be that in (c). Furthermore, assume 〈λ · v, λ · w〉σc = 〈v, w〉σc .

2 There is a non-zero complex number ξ so that

D−1 = ξD

on V , and |ξ|2 = 1

3 The form 〈v, w〉′ = 〈D(v), D(w)〉σc is again a σc-Hermitian form, so there
exists a real number ω such that

〈D(v), D(w)〉σc = ω〈v, w〉σc

4 The scalar ω is ±1.

5 If ζ is a square root of ωξ Then

〈v, w〉σ0 := ζ−1〈D(v), w〉σc = ζ〈v,D(w)〉σc

is a σ0-Hermitian form on V .

Remark 12. The proof of this Proposition is straightforward but somewhat
tedious. Interested reader can find detailed proof of this Proposition in the
author’s thesis. It is also a special case of [2, Proposition 8.9].

This Proposition allows us to write downs a precise equation relating 〈, 〉0
and 〈, 〉c whenever they both exist. It turns out the operator D is related to a
strong real form (Definition 3.12) of G. If G is equal rank, this x lives in G. If G
is unequal rank, then it lives in an extended group of G. The distinction affects
our technique in some of the proofs. So we will discuss the two cases separately.

It is also useful to see the action of σ-Hermitian dual on Langlands param-
eters.

Theorem 3.7. Suppose Γ = (Λ, ν) is the Langlands parameter for the (g0,K)-
module (π(Γ), J(Γ)).
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1. The σc-Hermitian dual of this module has the Langlands parameter

Γh,σc = (Λ, ν)h,σc = (Λ, ν).

In particular, if ν is real, then Γ = Γh,σc .

2. The σ0-Hermitian dual of this module has the Langlands parameter

Γh,σ0 = (Λ, ν)h,σ0 = (Λ,−ν).

Proposition 3.8. [2, Proposition 10.7] Suppose Γ = (Λ, ν) is a Langlands
parameter for G, and Γh,σc = (Λ, ν) is the c-Hermitian dual parameter, then

1. The irreducible quotient module J(Γ) admits a c-invariant Hermitian form
if and only if Γ is equivalent to Γh,σc .

2. J(Λ, ν) admits a c-invariant Hermitian form if and only if there exists
w ∈W (G,H), where H is a real Cartan subgroup of G, such that w·Λ = Λ
and w · ν = ν. In particular, if ν is real then J(Λ, ν) has a c-form.

3. Suppose ν is real, then any c-invariant Hermitian form on J(Λ, ν) has the
same sign on the lowest K-types. In particular, the form can be chosen to
be positive-definite on every lowest K-type.

This Proposition shows that by restricting to (g0,K)-modules with real in-
finitesimal character, we can always assume the existence of c-invariant Her-
mitian form. It is worth pointing out that this condition is quite weak. For
instance, when G is semi-simple or when Z(G) contains no split torus, then
every finite-dimensional representation is of real infinitesimal character. Also
every unitary representation can be unitarily induced from a unitary represen-
tation with real infinitesimal character.

3.5 Modules of Equal Rank Groups

To remind the reader, we talked about why we should split the equal rank
and unequal rank cases in Remark 12. In this subsection, G will denote a
real reductive algebraic group which is also equal rank (Definition 3.12). The
(g0,K)-modules we are interested in are irreducible, self-conjugate (so that the
δ-indicator is well defined), and of real infinitesimal character (so that the c-
invariant Hermitian form exists).

Definition 3.12 (Equal Rank, Unequal Rank, Strong Real Form). Suppose G
is a real reductive algebraic group and K = Gθ is a maximal compact subgroup,
then G is said to be equal rank if the rank of G is equal to the rank of K.
Equivalently, the automorphism θ of G is inner. In this case, a strong real form
for G is an element x ∈ G such that Ad(x) = θ. The definition of unequal rank
groups is the natural negation of the above conditions.

Remark 13. If so then K = CentG(x), so x ∈ Z(K), and x2 ∈ Z(K). It also
follows that x2 = z ∈ Z(G) ∩K.

Lemma 3.9. If G is equal rank, and ν is real, then J(Λ, ν) is Hermitian and
there exists an invariant Hermitian form.

12



Proof. Since θ = σ0 ◦ σc, we know:

[J(Λ, ν)h,σc ]θ ∼= J(Λ, ν)h,σ0 .

The group G being equal rank implies that θ is inner. Therefore

J(Λ, ν)h,σc ∼= J(Λ, ν)h,σ0 .

By Proposition 3.8, ν real implies

J(Λ, ν) ∼= J(Λ, ν) ∼= J(Λ, ν)h,σc .

Therefore
J(Λ, ν) ∼= J(Λ, ν)h,σc ∼= J(Λ, ν)h,σ0

i.e., J(Λ, ν) is Hermitian.

Proposition 3.6 allows us to define an invariant Hermitian form based on the
existing c-invariant Hermitian form.

Lemma 3.10. Let G be an equal rank real reductive algebraic group and (π, V )
be an irreducible (g0,K)-module which is both self-conjugate and of real infinites-
imal character. Then the σ0-Hermitian form is related to the σc-Hermitian form
by

〈v, w〉σ0 = ζ−1〈x · v, w〉σc

where x is a strong real form for G, z := x2 ∈ Z(K), and ζ is a square root of
χπ(z). Note that ζ is independent of v and w.

This form is non-degenerate and σ0-invariant. In particular, 〈, 〉σ0 is an
ordinary invariant Hermitian form under the actions of (g0,K).

We are now ready for the first main theorem of this paper.

Theorem 3.11. Let G be an equal rank real reductive algebraic group and (π, V )
be an irreducible (g0,K)-module which is both self-conjugate and of real infinites-
imal character. Then

δ(π) = ε(π)χπ(x2),

where x ∈ K is a strong real form of G.

Proof. Since π is self-conjugate and Hermitian (Lemma 3.9), π is also self-dual.
Therefore admits a non-degenerate invariant bilinear form B. Let 〈, 〉0 be the
form defined in Lemma 3.10. Define map J : V → V such that

B(v, w) = 〈v,J (w)〉0, ∀v, w ∈ V.

It is easy to see that J is conjugate linear, non-zero and (g0,K)-equivariant.
Recall the computation in the proof of Theorem 2.2, we replace 〈, 〉 with the
Hermitian form 〈, 〉0 and get:

ε(π)δ(π) = sgn

(
〈J (v),J (w)〉0

〈w, v〉0

)
, ∀v, w ∈ V where 〈v, w〉 6= 0.

Rewriting this equation using the c-invariant Hermitian form 〈, 〉c we have:

ε(π)δ(π) = sgn

(
〈J (v),J (w)〉0

〈v, w〉0

)
= sgn

(
ζ−1〈x · J (v),J (w)〉c

ζ−1〈x · v, w〉c

)
.

13



Since x ∈ K by Definition 3.12, J is equivariant under the action of x, i.e.,
x · J (v) = J (x · v). Set w = x · v to be an element in the lowest K-types of π,
then

ε(π)δ(π) = sgn

(
ζ−1〈J (w),J (w)〉c

ζ−1〈w,w〉c

)
= sgn(ζ−1ζ)sgn

(
〈J (w),J (w)〉c

〈w,w〉c

)
.

Because ζ is a square root of a central character for a self-dual representation,
it’s not hard to see that |ζ| = 1 hence ζ = ζ−1 and sgn(ζ−1ζ) = sgn(ζ−2) =
χπ(z−1) = χπ(x−2).

It remains to determine

sgn

(
〈J (w),J (w)〉c

〈w,w〉c

)
.

Suppose w is in the lowest K-type with highest weight λ. Then J (w) is in the λ
weight space. The weight λ of the same length as λ, therefore λ again represents
a lowest K-type. So Proposition 3.8(3) implies that 〈J (w),J (w)〉c > 0 and
〈w,w〉c > 0. So

sgn

(
〈J (w),J (w)〉c

〈w,w〉c

)
= 1

and
ε(π)δ(π) = χπ(x−2)⇒ δ(π) = ε(π)χπ(x2)

as desired.

Remark 14. There are many choices for a strong real form x ofG. The formula in
Theorem 3.11 is independent of the choice of x. Suppose y is another strong real
form of G, then y = zx for some z ∈ Z(G). The central character χπ evaluted
on x2 equals that evaluated on y2 because χπ(z2) = 1 for any z ∈ Z(G). This
is essentially because π is self-dual. This argument can be repeated for the rest
of the Theorems in this paper, whenever a strong real form is involved.

3.6 Modules of Unequal Rank Groups

In this subsection, G denotes an unequal rank real reductive algebraic group,
and (π, V ) is an irreducible, self-conjugate (g0,K)-module with real infinitesimal
character.

Since G is unequal rank, the Cartan involution of G is no longer inner. That
means x does not live in G (or K) anymore, but it is an element of an extended
group of G.

3.6.1 Extended Group

Definition 3.13. A splitting datum or pinning is a set P = {B,H, {Xα} where
B is a Borel subgroup, H is a Cartan subgroup contained in B and {Xα} is a
set of root vectors for the simple roots of H in B.

Definition 3.14. An involution of G is said to be distinguished if it preserves
a pinning.

14



For G and the Cartan involution θ of G, we can define the distinguished
involution γ in the inner class of θ canonically. The interested reader can find
how to define γ in [2, Section 12]. The γ defined this way has the properties:

γ2 = 1, γ ◦ θ = θ ◦ γ, γ ◦ σc = σc ◦ γ. (3)

Definition 3.15. The extended group γG(C) forG(C) is the semi-direct product

γG(C) = G(C)o {1, γ}

According to (3), γ preserves G, K, K(C). We can therefore define all the
corresponding extended groups γG, γK, and γK(C).

Definition 3.16. A strong real form x of G satisfies is an element in γG\G
such that Ad(x) = θ on G. In this case, x = x0γ, x0 ∈ K and x2

0 = x2 ∈ Z(K).

A consequence of θ being outer is that π is not necessarily Hermitian if it
has real infinitesimal character as stated in Lemma 3.9.

Lemma 3.12. Assume G and π satisfies all conditions stated in the beginning
of Section 3.6. Then π is Hermitian if and only if π ∼= πγ .

We treat the Hermitian case and non-Hermitian case separately.

3.6.2 Hermitian Modules

In addition to the conditions we put on π in the beginning of Section 3.6, we also
assume that π is Hermitian. Consequently, π ∼= πγ by Lemma 3.12. By Clifford
theory and more specifically Proposition 3.6, π extends to two (g0,

γK)-modules,
denoted π1 and π2. They satisfy π1(γ) = −π2(γ). We can write down a similar
equation as in Lemma 3.10 with x in the extended group. The extensions π1

and π2 gives meaning to the expression x · v below.

Lemma 3.13. Let G be an unequal rank real reductive algebraic group and
(π, V ) be an irreducible (g0,K)-module which is self-conjugate, Hermitian, and
of real infinitesimal character. Then the σ0-Hermitian form is related to the
σc-Hermitian form by

〈v, w〉σ0 = ζ−1〈x · v, w〉σc

where x is a strong real form for G, x ∈ γK, z := x2 ∈ Z(K), and ζ is a square
root of χπ(z). Note that ζ is independent of v and w.

This form is non-degenerate and σ0-invariant. In particular, 〈, 〉σ0 is an
ordinary invariant Hermitian form under the actions of (g0,K).

Proof. We have already established that there exists a σc-invariant Hermitian
form for (π, V ) under these assumptions. The rest of the proposition is simply
a special case of Proposition 3.6, taking D to be π(x) and λ = x2 = z ∈ Z(K).
In this case ω = 1, ξ = ζ−2 and the square root of ωξ = ξ−1 is ζ.

We are downplaying the distinction between (g0,K)-modules and (g,K(C))-
modules, because the difference is not of essential importance to us and it may
be a potential distraction.

Lemma 3.14. Let G and (π, V ) satisfy the conditions given in the beginning of
Section 3.6.2. Then the extensions π1 and π2 both admit c-invariant Hermitian
forms and are Hermitian.
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Proof. To say π1 admits a c-Hermitian form is equivalent to saying π1
∼= [π1]h,σc .

In fact, the module [π1]h,σc is also an extension of π. Because there are only
two extensions of π, we will instead prove

[π1]h,σc � π2.

Suppose there exists such an isomorphism:

ψ : π2 → [π1]h,σc

[π1]h,σc(γ) · ψ(v) = ψ(π2(γ)v). (4)

Let v ∈ V such that π1(γ)v = cv some c ∈ C∗. Such vector exists because γ
acts as an isomorphism D : π → πγ and D is of finite order.

By definition, π2(γ)v = −cv. We also know that ψ(v)(v) 6= 0 because the
c-Hermitian form on V is positive definite. Equation (4) left hand side evaluated
on v is

[π1]h,σc(γ) · ψ(v)(v) = ψ(v)(π1(γ−1)v) = ψ(v)(c−1v) = c−1ψ(v)(v)

The right hand side evaluated on v equals to −cψ(v)(v). The two sides equal
if and only if −c = c−1 if and only if |c| = −1. This contradicts the fact that

|c| ≥ 0 for all c ∈ C. Therefore π1
∼= πh,σc1 .

It remains to show that the extensions are Hermitian. This is immediate
because θ = σc ◦ σ0 and γ is inner to θ.

Definition 3.17. Let G and π satisfy the conditions given in the beginning of
Section 3.6.2. Suppose π1 is an extended (g0,

γK)-module of π. Define κ(π) as
follows:

κ(π) =

{
1 π1 is self-dual

−1 π1 is not self-dual
.

Remark 15. Note that κ only depends on π, even though it uses the definition
of π1.

Theorem 3.15. Let G be an unequal rank real reductive algebraic group and
(π, V ) be an irreducible self-conjugate, Hermitian (g0,K)-module with real in-
finitesimal character. Then we have the following equation:

δ(π) = ε(π)χπ(x2)κ(π)

where x ∈ γK is a strong real form given by G.

Proof. From previous calculations, we have:

ε(π)δ(π) = sgn

(
ζ−1〈x · J (v),J (w)〉c

ζ−1〈x · v, w〉c

)
= sgn(ζ−2)sgn

(
〈x · J (v),J (w)〉c

〈x · v, w〉c

)
.

(5)
As before we would like to have x commutes with J . Here, it is not a given,
because x is in the extended group.

If the extended module π1 is self-dual, then B is invariant under the action
of x. Therefore

〈v,J (x ·w)〉σ0 = B(v, x ·w) = B(x−1 ·v, w) = 〈x−1 ·v,J (w)〉σ0 = 〈v, x ·J (w)〉σ0
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implies
J (x · v) = x · J (v) ∀v ∈ V

If the extended module π1 is not self-dual, then π∨1
∼= π2 since π∨1 is easily

proven to be an extension of π. We can take the isomorphism ψ : π2
∼= π∨1 and

it will serve as an (g0,K)-invariant bilinear form on V :

B(v, w) = ψ(v)(w) ∀v, w ∈ V.

The map ψ being an intertwiner means

ψ(π2(x)v) = π∨1 (x)ψ(v).

This together with the fact that x = x1γ implies

B(x · v, w) = B(π1(x)v, w) = ψ(π1(x)v)(w) = ψ(−π2(x)v)(w)

= −π∨1 (x)ψ(v)(w) = −ψ(v)(π1(x−1)w) = −B(v, x · w)

We define an index κ that takes the value 1 if π1 is self-dual and -1 if π1 is
not self-dual. Then

B(x · v, w) = κ(π)B(v, x−1 · w)

This implies
x · J (v) = κ(π)J (x · v)

Equation (5) hence becomes

ε(π)δ(π) = sgn(ζ−2)sgn

(
〈κ(π)J (x · v),J (w)〉c

〈x · v, w〉c

)

= χπ(x2)κ(π)sgn

(
〈J (w),J (w)〉c

〈w,w〉c

)

By the proof of Theorem 3.11, J sends lowest K-types to lowest K-types.
Since the c-invariant Hermitian form is positive-definite on all lowest K-types,
the theorem easily follows.

Remark 16. The index κ(π) = 1 for finite-dimensional π. The proof of this fact
is in the author’s thesis.

3.6.3 Non-Hermitian Modules

We assume forG and (π, V ) the conditions stated in the beginning of Section 3.6.
In addition, we assume π is not Hermitian. By Lemma 3.12, we know that
π � πγ . Clifford theory implies that we can induce π to an irreducible (g0,

γK)-
module, denoted π̃.

The following lemmas are needed for the proof of the main theorem (Theo-
rem 3.22) of this section.

Lemma 3.16. If π has real infinitesimal character then π̃ has real infinitesimal
character.
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Proof. The module π̃ restricted to (g0,K) splits into two modules π̃ = π + πγ .
The action of a0 on J is by the real valued character ν. We will show that νγ

is again real valued. By definition θ acts on a0 by −1 and γ is inner to θ, i.e.,
θ = Ad(x0) ◦ γ where x0 ∈ Hf by the discussion in [2, P80]. Therefore

νγ(X) = ν(γ(X)) = ν(x0θ(X)x−1
0 ) = ν(−X) = −ν(X).

Clearly νγ is real valued on a0.

Lemma 3.17. [2, Proposition 12.7] Suppose π̃ is an irreducible (g0,
γK)-module

of real infinitesimal character. Then π̃ admits a non-degenerate c-invariant
Hermitian form that is unique up to a real scalar multiple. It can be chosen to
be positive-definite on the lowest γK-types of π̃.

Lemma 3.18. The extended module π̃ is Hermitian and self-dual.

Proof. The twist of π̃ is Indπγ therefore isomorphic to π̃. By Proposition 3.17
π̃ ∼= π̃h,σc . Therefore π̃ ∼= π̃h,σ0 .

The module π̃ is self-conjugate given that π is self-conjugate. It is a conse-
quence that π̃ is self-dual.

Lemma 3.19. Suppose (π, V ) is an irreducible (g0,K)-module and (π̃, Ṽ ) its
irreducibly induced (g0,

γK)-module. If δ(π) and δ(π̃) both exist, then δ(π) =
δ(π̃).

Proof. Since π is self-conjugate, there exists J : V → V conjugate linear and
(g0,K) equivariant. By definition of induced representation Ṽ = V ⊕γV . Define

J̃ : Ṽ → Ṽ such that:

J̃ (v + γw) = J (v) + γJ (w), ∀v ∈ V, γw ∈ γV

It is easy to see that J̃ is conjugate linear and γG-invariant. We will demonstrate
the calculation for γG-invariance. For g ∈ G:

J̃ (g · (v + γw)) = J̃ (g · v + γγ(g) · w) = J (g · v) + γJ (γ(g) · w)

= g · J (v) + γγ(g) · J (w) = g · J (v) + g · γJ (w)

= g · J̃ (v + γw)

and

J̃ (γ · (v + γw)) = J̃ (γv + zw) = γJ (v) + zJ (w) = γ(J (v) + γJ (w))

= γJ̃ (v + γw)

Then for v ∈ V :

δ(π)v = J 2(v) = J̃ 2(v) = δ(π̃)v

Proposition 3.20. Assume G and π̃ satisfy the conditions in the beginning of
this section. Fix a strong real form x ∈ γK\K such that x2 ∈ Z(K) acts on
π as a scalar ζ2. Therefore the central element x2 also acts on πγ by ζ2. Fix
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a c-invariant Hermitian form 〈, 〉c on π̃ which is positive-definite on the lowest
γK-types. If π̃ admits an invariant Hermitian form, then we can define 〈, 〉0

〈ṽ, w̃〉0 = ζ−1〈x · ṽ, w̃〉c = ζ〈ṽ, x · w̃〉c

and it is a (g0,
γK)-invariant Hermitian form on π̃.

Proof. This is again a consequence of Proposition 3.6 with λ replaced by x. The
verification of 〈, 〉0 being an ordinary invariant Hermitian form is elementary.

Now we have shown that all the good properties that we want and π does
not have are possessed by π̃. Also π̃ inherited the good properties of π. For
example, having a c-invariant Hermitian form etc. This enables us to use the
previous arguments for Hermitian modules of equal rank groups on π̃ to obtain
a formula for δ(π̃).

Theorem 3.21. Suppose (π̃, Ṽ ) is the the induced module of (π, V ) with π
satisfying all the conditions we set in this section. Then

δ(π̃) = ε(π̃)χπ̃(x2).

Because of the above lemmas, the proof of this theorem can be obtained by
replacing π with π̃ in the proof of Theorem 3.11.

Let’s come back to our main subject of interest here: δ(π). Lemma 3.19
shows that δ(π) = δ(π̃); the proof applies in the infinite-dimensional case.

Theorem 3.22. Let G be a real reductive algebraic group which is unequal rank,
(π, V ) be an irreducible (g0,K)-module that is not Hermitian but self-conjugate
and of real infinitesimal character. Then

δ(π) = ε(π̃)χπ(x2)

where π̃ = Ind
(g0,

γK)
(g0,K) π and x ∈ γK\K is a strong real form of G.

This theorem is a direct corollary of Theorem 3.21 and Lemma 3.19, with
the additional observation that χπ(x2) = χπ̃(x2).

4 Formula for Finite-Dimensional Representa-
tions

The finite-dimensional case is comparatively more clean and can be useful to
some readers. Here we give one theorem for the relation of ε(π) and δ(π) for
π finite-dimensional. Then we present a closed formula for the δ-indicator of
finite-dimensional representations.

Theorem 4.1. Let G be a real reductive algebraic group, and π be an irreducible,
finite-dimensional, and self-conjugate representation of G with real infinitesimal
character. Then

1. If π is Hermitian, then δ(π) = ε(π)χπ(x2);

2. if π is non-Hermitian, then δ(π) = ε(π̃)χπ(x2).
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Here π̃ = Ind
γG
G π, x is a strong real form of G.

Remark 17. The indicator ε(π̃) is understood when G is simple, in that case,
the Chevalley involution is either trivial or inner to γ. The formula for ε(π̃) is
given in [1].

The Frobenius-Schur indicator is given in terms of the central character in
Bourbaki.

Theorem 4.2. [3, Ch.IX, 7.2, Proposition 1] Let G(C) be a connected complex
reductive Lie group, π an irreducible finite-dimensional self-dual representation
of G(C). Then

ε(π) = χπ(z(ρ∨)).

Here z(ρ∨) = exp(2πiρ∨) and ρ∨ is the half sum of the positive co-roots.

For proof, see [1, Lemma 5.2]. If we replace G(C) by a real form G, the same
theorem holds.

Theorem 4.3. Suppose G is a real reductive algebraic group, and π is an ir-
reducible finite-dimensional self-conjugate Hermitian representation of G with
real infinitesimal characters. Then

δ(π) = χπ(z(ρ∨) · x2),

where x is a strong real form of G.

Note that if G is semi-simple, then π is finite-dimensional implies that π has
real infinitesimal character. Therefore Theorem 4.3 can be further simplified
under the assumtion that G is semi-simple.

Theorem 4.4. Suppose G is a semi-simple algebraic group, and π is an irre-
ducible finite-dimensional self-conjugate Hermitian representation of G. Then

δ(π) = χπ(z(ρ∨) · x2),

where x is a strong real form of G.

5 Errata for [6]

The formula in Theorem 4.3 enables us to quickly calculate the δ-indicator for
finite-dimensional representations for simple Lie algebras. Hence we were able
to correct mistakes in the table of indicators in [6, page 292].

The notation g here denotes a real form of a simple complex Lie algebra.
ρ(Λ) is an irreducible complex representation of g with highest weight Λ such
that ρ ∼= ρ. A well known fact is that Λ can be written as a linear combi-
nation of fundamental representations with coefficient of the ith fundamental
representation Λi.

The asterisks mark the corrections (1st, 4th, and 5th row). Some bounds on
the index of the real forms are also added to the table, for without them there are
apparent contradictions. For example the indicators of the same representations
of so3,5 and so5,3 would be different.
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g δ(ρ(Λ))

suk,2p−k (p ≥ 2, 1 ≤ k ≤ p) (−1)(p2+k)Λp *
u∗l (H) (l ≥ 4) (−1)Λ1+Λ3+···+Λ2bl/2c−1

slp(H) (p ≥ 3) (−1)Λ1+Λ3+···+Λ2p−1

so2k−1,2(l−k)+1 (l ≥ 2, 1 ≤ k ≤ bl/2c) (−1)(k+l(l−1)/2)(Λl−1+Λl) *

so2k,2(l−k)+1 (l ≥ 3, 2 ≤ k ≤ l) (−1)(k+l(l+1)/2)Λl *

so2k,2(2p−k) (p ≥ 2, 2 ≤ k ≤ p) (−1)(k+p)(Λ2p−1+Λ2p)

spk,l−k (l ≥ 2, 1 ≤ k ≤ bl/2c) (−1)Λ1+Λ3+···+Λ2b(l+1)/2c−1

EVI (−1)Λ1+Λ3+Λ7

For detailed computation of this table, see the author’s thesis.
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