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The real-quaternionic indicator, also called the δ indicator, indicates if a self-

conjugate representation is of real or quaternionic type. It is closely related to

the Frobenius-Schur indicator, which we call the ε indicator. The Frobenius-Schur

indicator ε(π) is known to be given by a particular value of the central character.

We would like a similar result for the δ indicator. When G is compact, δ(π) and ε(π)

coincide. In general, they are not necessarily the same. In this thesis, we will give

a relation between the two indicators when G is a real reductive algebraic group.

This relation also leads to a formula for δ(π) in terms of the central character.

For the second part, we consider the construction of the local Langlands cor-

respondence of GL(2, F ) when F is a non-Archimedean local field with odd residual

characteristics. By re-examining the construction, we provide new proofs to some

important properties of the correspondence. Namely, the construction is indepen-

dent of the choice of additive character in the theta correspondence.
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Part I

The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of

Real Reductive Algebraic Groups
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Chapter 1: Introduction

The notion of the Real-Quaternionic indicator was introduced by Iwahori in [2].

He used it as a tool for finding all real irreducible representations of a real Lie algebra

g0. The simple elegance of this indicator as well as its application to quantum

physics motivated many mathematicians to study how to compute it. For instance,

see [3], [1], [4], [5], etc. However, a simple formula for this indicator is still missing.

In this thesis, we establish a simple relation between the Real-Quaternionic

indicator and the Frobenius-Schur indicator. For finite dimensional representations

of real reductive Lie groups, this relation gives a formula for the Real-Quaternionic

indicator through a well-known formula for the Frobenius-Schur indicator.

The motivational proof for the main results in this thesis will be given in

Chapter 3 under the assumption that π is unitary.

The cases of finite-dimensional (g, K)-module and infinite-dimensional (g, K)-

module will be treated separately. The reason for this is that the c-invariant Her-

mitian form behaves differently under the two assumptions. For example, the c-

invariant Hermitian form exists and is positive-definite for all finite-dimensional

(g, K)-modules but this is not true for infinite-dimensional (g, K)-modules.

The relation between δ-indicator and ε-indicator for finite-dimensional (g, K)-
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modules is given in Theorem 4.4.2 and Theorem 4.5.5. The main results for infinite-

dimensional (g, K)-modules are Theorem 5.2.5, Theorem 5.2.9, and Theorem 5.2.14.

Chapter 2: Preliminaries

Let G be a real reductive algebraic group (Definition 2.4.4). The real Lie

algebra of G is denoted g0 and its complexification g is

g = g0 ⊗R C

Fix once and for all a choice of maximal compact subgroup of G, and let it be

denoted K. The complexification of K is denoted K(C) (Definition 2.3.1).

Definition 2.0.1 (Definition 0.3.8 [6]). A (g, K)-module is a pair (π, V ) with V a

complex vector space and π a map

π : g ∪K → End(V )

satisfying

1. π|g is a complex linear Lie algebra representation, and π|K is a group repre-

sentation;

2. every vector v ∈ V is K-finite, i.e. dim〈π(k)v〉 <∞

3. the differential of the action of K is equal to the restriction to k0 of the action

of g;
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4. k · (X · v) = (Ad(k)X) · (k · v), ∀k ∈ K,X ∈ g, v ∈ V

A (g, K)-module V is called admissible if all K-types are of finite multiplicity.

A morphism of (g, K)-modules is a linear map intertwining both the action of

K and of g.

Similarly, we can define (g0, K)-modules

Definition 2.0.2 (Definition 2.10 [7]). An (g0, K)-module is a complex vector space

V that is at the same time a representation of K and of the real Lie algebra g0,

subject to the conditions in Definition 2.0.1 with g replaced by g0.

Remark 1. A (g0, K)-module (π, V ) is naturally a (g, K)-module, with the action

of g on V defined as:

(X ⊗ z) · v = zX · v ∀X ∈ g0

Definition 2.0.3 (Definition 8.5.1 [6]). If (π, V ) is a (g, K)-module, set

V ∨ = {f : V → C| dim〈π∨(K)f〉 <∞ }

here π∨(k) acts by the algebraic dual representation,

(π∨(k)f)(v) = f(π(k−1)v) ∀k ∈ K

and

(π∨(X)f)(v) = f(−π(X)v) ∀X ∈ g

(π∨, V ∨) is called the dual module.
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The module (π∨, V ∨) is indeed a (g, K)-module, see Lemma 8.5.2 in [6]. More-

over,

(π∨∨, V ∨∨) ∼= (π, V )

canonically.

2.1 Defining The Frobenius-Schur Indicator

Definition 2.1.1 (Frobenius-Schur indicator). Let (π, V ) be an irreducible self-dual

(g, K)-module. There exists an invariant bilinear form B on V . The Frobenius-Schur

indicator ε is defined to be:

ε(π) =


1 B is symmetric

−1 B is skew-symmetric

We say ε(π) = 0 if π is not self-dual.

Remark 2. π self-dual implies the existence of a bilinear form B. Let ψ : (π, V )→

(π∨, V ∨) be any isomorphism. Define B : V × V → C to be:

B(v, w) := ψ(v)(w)

It is easy to see that B is bilinear and invariant under the actions of g and K.

And because π is irreducible, B is unique up to a complex multiple. We call the

representations with Frobenius-Schur indicator 1 orthogonal; and those with ε = −1

symplectic.

We will show that B is either symmetric or skew-symmetric. An important

tool is Schur’s lemma for (g, K)-modules.
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Theorem 2.1.1. Any irreducible representation (π, V ) of G is admissible (Defini-

tion 2.0.1).

Lemma 2.1.2 (Schur’s Lemma for (g, K) modules). Suppose (π, V ) is an irreducible

complex (g, K) module, and ϕ : V → V is a (g, K) module isomorphism. Then there

is a constant λ ∈ C such that ϕ(v) = λv for all v ∈ V .

Proof. Let W be a δ-isotypic subspace in V , δ ∈ K̂. By assumption of irreducibility

hence admissibility (Theorem 2.1.1), W is finite dimensional. Because ϕ is a (g, K)

invariant map, ϕ preserves W . Meaning that we can find a eigenvalue of ϕ on W .

Let λ be that eigenvalue and w be a eigenvector of λ. Define:

Wλ = {v ∈ V |ϕ(v) = λv}

It is clear that this space is a (g, K) invariant subspace of V . The irreducibility of

V implies that Wλ = 0 or Wλ = V . Because of the existence of w, Wλ is forced to

be V .

The isomorphism ψ induces ψ∨ : (π∨∨, V ∨∨)→ (π∨, V ∨), where ψ∨(F ) = F ◦ψ.

Let ι : V → V ∨∨ be the canonical isomorphism taking v to Fv where Fv(f) = f(v).

Composing ψ∨ with ι, we obtain another isomorphism ξ(ψ) = ψ∨ ◦ ι : (π, V ) →

(π∨, V ∨). By Schur’s lemma, ξ(ψ) = cψ for some c ∈ C∗. Next we show c = ±1.

A brief calculation proves that ξ(ξ(ψ)) = ψ:

[ξ(ξ(ψ))(v)] (w) = [[ξ(ψ)]∨ ◦ ι(v)](w) = [Fv ◦ ξ(ψ)](w) = [Fv ◦ [ψ∨ ◦ ι]](w)

= Fv(ψ
∨(Fw)) = Fv(Fw ◦ ψ) = Fw ◦ ψ(v) = ψ(v)(w)
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Since all maps involved here are linear, it’s not hard to see that ξ(cψ) = cξ(ψ).

Therefore the equation above gives: c2ψ = ψ, which implies c = ±1. Using this

fact, we now prove B(w, v) = ±B(v, w) ∀v, w ∈ V .

ξ(ψ)(v)(w) = [ψ∨ ◦ ι(v)](w) = [ψ∨(Fv)](w) = [Fv ◦ ψ](w) = ψ(w)(v) = B(w, v)

Therefore B(w, v) = cB(v, w), i.e., B(w, v) = ±B(v, w).

2.2 Defining The Real-Quaternionic Indicator

To define the Real-Quaternionic indicator, we consider a self-conjugate (g0, K)-

module (π, V ). First, we define the conjugate representation:

Definition 2.2.1 (Conjugate representation). Let τ : C → C be a complex conju-

gation and set:

V = C⊗C,τ V

The (g0, K)-module action on V is as follows:

π(X)(z ⊗ v) = z ⊗ (π(X)v) ∀X ∈ g0, v ∈ V, z ∈ C

π(k)(z ⊗ v) = z ⊗ (π(k)v) ∀k ∈ K, v ∈ V, z ∈ C

The (g0, K)-module (π, V ) is the conjugate representation of (π, V ).

Another way to define the conjugate representation is the dual of the Hermitian

dual.

Definition 2.2.2 (Hermitian dual). If (π, V ) is a (g0, K)-module, set

V h = {η : V → C|ξ(u+ v) = ξ(u) + ξ(v), ξ(zv) = zξ(v), dim〈πh(K)ξ〉 <∞}

7



here πh acts as follows:

[πh(k)ξ](v) = ξ(π(k−1)v) ∀k ∈ K

[πh(X)ξ](v) = ξ(π(−X)v) ∀X ∈ g0

We say (πh, V h) is the Hermitian Dual of (π, V )

Remark 3. There is a version of “Hermitian dual” for (g, K)-modules. It’s called

the σ-Hermitian dual, see Definition 4.2.2 with the action of K(C) restricted to K.

Lemma 2.2.1 (Alternative definition for conjugate representation). Let (π, V ) be

a (g0, K)-module. We can define the conjugate representation of π to be (π, V ) :=

([πh]∨, [V h]∨).

Remark 4. The two definitions of conjugate representation are equivalent, essentially

because V ∨∨ ∼= V . Notice that this may not be true for the algebraic dual V ∗ instead

of V ∨ if V is infinite-dimensional.

Lemma 2.2.2. Any two of the three operations: dual, Hermitian dual, and conju-

gation, compose into the third. I.e.:

(π, V ) = ([πh]∨, [V h]∨) = ([π∨]h, [V ∨]h)

(πh, V h) = (π∨, V ∨) = ([π]∨, [V ]∨)

(π∨, V ∨) = (πh, V h) = ([π]h, [V ]h)

Definition 2.2.3. Let (π, V ) be an irreducible (g0, K)-module. We say π is self-

conjugate if π ∼= π.
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Definition 2.2.4 (Real-Quaternionic indicator). Let (π, V ) be an irreducible self-

conjugate (g0, K)-module. There exists a non-zero (g0, K) equivariant conjugate

linear map J : V → V . For such a map, there exists c ∈ R∗ such that J 2(v) = cv

∀v ∈ V . The Real-Quaternionic indicator δ is defined to be:

δ(π) = sgn(c)

We say δ(π) = 0 if π is not self-conjugate.

We will prove that this definition is valid. The argument is similar to what we

did for the Frobenius-Schur indicator.

Let ψ : (π, V ) → (π, V ) be an isomorphism, ι : V → V be ι(v) = 1 ⊗ v.

Consequently ι−1 : V → V is ι−1(z ⊗ v) = zv. Let

J = ι−1 ◦ ψ : V → V

It is easy to see that J is (g0, K) equivariant and conjugate linear. Therefore, J 2

is (g0, K) equivariant and linear. By Schur’s lemma, J 2(v) = cv for some c ∈ C∗

and for all v ∈ V . Now we prove that c ∈ R∗:

J 3(v) = J (J 2(v)) = J (cv) = c̄J (v)

= J 2(J (v)) = cJ (v)

Moreover, any map which satisfies the same conditions that J does is a complex

multiple of J , also (zJ )2 = |z|J 2 for all z ∈ C. Thus conclude that the definition

is valid.

We are going to present an alternative definition, which is also the motivational

definition for the name Real-Quaternionic indicator. We first define what it means

for a (g0, K)-module (π, V ) to be of real/quaternionic type.
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Definition 2.2.5. Let (π, V ) be an irreducible self-conjugate (g0, K)-module. We

say (π, V ) is of real type if there exists an irreducible (g0, K)-module (π0,W ) with

W a real vector space such that π ∼= π0 ⊗R C; we say (π, V ) is of quaternionic type

if there is an irreducible (g0, K)-module (ρ, U) over H such that π = ResHCρ (here

Res denote the restriction of scalars).

The notation π0 ⊗R C is interpreted as follows:

V = W ⊗R C, π(x) = π0(x)⊗ 1

Definition 2.2.6 (Alternative definition for δ-indicator). Let (π, V ) be an irre-

ducible self-conjugate (g0, K)-module. We define the Real-Quaternionic indicator

δ(π) as:

δ(π) =


1 π is of real type

−1 π is of quaternionic type

Claim 1. The above two definitions for the Real-Quaternionic indicator are equiva-

lent.

Proof. First, we claim that π is of real type if and only if there exists a non-zero

(g0, K) equivariant conjugate linear map J : V → V such that J 2 = c for some

c ∈ R>0.

To prove this claim, suppose π is of real type. Then there exists a real irre-

ducible (g0, K)-module (π0,W ) such that (π, V ) ∼= (π0,W ⊗R C). Define the map

J : V → V to be:

J (w ⊗ z) = w ⊗ z
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By definition, one can quickly deduce that J is conjugate linear, (g0, K) equivariant

and J 2 = 1.

Conversely, suppose there exists a non-zero (g0, K) equivariant conjugate linear

map J : V → V such that J 2 = c for some c ∈ R>0. Take the eigenspace of
√
c:

W = {v ∈ V |J (v) =
√
cv}

W is clearly an R vector space and invariant under π. We denote the restriction of

π on W to be (π0,W ). This is an irreducible real (g0, K)-module and π ∼= π0 ⊗R C.

Thus conclude the claim we made in the beginning of this proof is true.

The fact that π is of quaternionic type if and only if there exists a non-zero

(g0, K) invariant conjugate linear map J : V → V such that J 2 = c for some

c ∈ R<0 follows from this claim and the implicit fact that if an irreducible complex

(g0, K)-module is self-conjugate it can either be of real type or of quaternionic

type.

2.3 Complexifications

The main tool we will be using requires the interaction between different real

forms (which will be defined in Section 2.4). Therefore it is important to define the

complexifications.

Definition 2.3.1 (Complexification of compact Lie groups). [7, P14-15] Define

R(K,C) to be the algebra generated by matrix coefficients of finite-dimensional

irreducible representations of K. Define K(C) to be the set of all C-algebra ho-

momorphisms: R(K,C) → C. We call this algebraic group the complexification of
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K.

Definition 2.3.2. Let (π, V ) be a representation of K. After picking a basis of V ,

we can write it as:

π : k 7→ (πij(k))

Define the representation (π(C), V ) of K(C) as:

π(C) : s 7→ (s(πij))

It is clear that the following diagram commutes:

K K(C)

GL(n,C)

ι

π π(C)

Definition 2.3.3. [7, Corollary 2.18] Let (π, V ) be a (g, K) module. We can extend

π to a (g, K(C))-module, we call it (π(C), V ), with actions of K(C) defined as above.

The compatibility conditions are the same as in Definition 2.0.1.

Theorem 2.3.1. [7, P15-16]

1. The construction of complexification is a covariant functor on compact Lie

groups.

2. Every locally finite continuous representation π of K extends uniquely to an

algebraic representation π(C) of K(C) on the same space; and every algebraic

representation of K(C) restricts to a locally finite continuous representation

of K.
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3. This extension defines an equivalence of categories from (g0, K)-modules to

(g, K)-modules (Remark 1) and from (g, K)-modules to (g, K(C))-modules.

2.4 Real Forms

We can complexify a real algebraic group and obtain a complex algebraic

group. On the other hand, complex Lie groups have real forms. In this section, we

will define the concept of real form and some related notions. We follow [7] closely

here.

Definition 2.4.1 (Complex Connected Reductive Algebraic Groups). [7, Section

3] We say G(C) is a complex connected reductive algebraic group if G(C) satisfies

the following:

1. it is a subgroup of the group of n×n invertible matrices, specified as the zero

locus of a collection of polynomial equations in the matrix entries and the

inverse of the determinant

2. it has no nontrivial normal subgroup consisting of unipotent matrices, and

3. it is connected as a Lie group

Remark 5. The second criteria is equivalent to

2′ After appropriate change of basis in Cn, the group G(C) is preserved by

σc(g) = (g∗)−1

(inverse conjugate transpose) of GL(n,C).
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Definition 2.4.2 (Real Forms). A real form of a complex Lie group G(C) is an

anti-holomorphic Lie group automorphism σ of order 2:

σ : G(C)→ G(C) σ2 = Id

Remark 6. The differential dσ of σ at identity is a real form of g. By abuse of

notation, we will say σ is a real form of g.

Definition 2.4.3. Given a real form σ, the group of real points is

G = G(R, σ) = G(C)σ

Definition 2.4.4. A real reductive algebraic group G (which we will call “real group”

for short) is the group of real points of a complex connected reductive algebraic

group.

Remark 7. Take σc : G(C) → G(C) to be σc(g) = (g∗)−1 after appropriate change

of basis. It is a real form, so it defines a real group

G(R, σc) = G(C) ∩ U(n)

Since G(C) is Zariski closed in GL(n,C) then G(R) is closed in U(n) therefore it is

compact.

Definition 2.4.5. This real form is called the compact real form of G(C) and it’s

unique up to conjugation by an inner automorphism of G(C).

The real group G we fixed from the very beginning has a real form, we denote

it as σ0. By Definition 2.4 G = G(R, σ0) = G(C)σ0 . It is well known that there
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exists a compact real form σc such that

σ0 ◦ σc = σc ◦ σ0

this compact real form is unique up to conjugacy by G = G(C)σ0 .

Definition 2.4.6 (Cartan involution). The composition of the two real forms men-

tioned above

θ := σ0 ◦ σc (2.1)

θ is an algebraic involution of G(C), and is called a Cartan involution for the real

form σ0. The group K = Gθ is a maximal compact subgroup of G and its complex-

ification is a reductive algebraic group K(C) = G(C)θ.

Chapter 3: Unitary Representations

Unitary representations play an important role in this paper. Many results

and proofs are generalizations of those of unitary representations.

Theorem 3.0.1. Let (π, V ) be an irreducible unitary representation of G; then

ε(π) = δ(π).

Proof. First, we note that if π is Hermitian, then π is self-conjugate if and only if π

is self-dual. This is a direct consequence of Lemma 2.2.2.

Now assume ε(π) and δ(π) are both non-zero, we will construct a non-zero
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conjugate linear equivariant map J : V → V and compute the sign of J 2. We

describe this construction.

Let B : V × V → C be an invariant bilinear form on V since π ∼= π∨. Let 〈, 〉

be an invariant positive-definite Hermitian form on V . Define J by the condition:

B(v, w) = 〈v,J (w)〉 (3.1)

the map J : V → V is conjugate linear, G equivariant and non-zero. By the

discussion after Definition 2.2.4, there exists c ∈ R such that J (v) = cv for all

v ∈ V . We compute sgn(c) = δ(π).

〈J (v),J (w)〉 = B(J (v), w) = ε(π)B(w,J (v)) = ε(π)〈w,J 2(v)〉

= ε(π)c〈w, v〉 ∀v, w ∈ V

implies

ε(π)δ(π) = sgn(ε(π)c) = sgn

(
〈J (v),J (w)〉
〈w, v〉

)
= sgn

(
〈J (v),J (w)〉
〈v, w〉

)

∀v, w ∈ V such that 〈v, w〉 6= 0

Set v = w. The right hand side equal to 1 because the form 〈, 〉 is positive definite.

Therefore

ε(π) = δ(π)

Remark 8. This proof can be done in a more general setting, the group here does

not have to be a real reductive Lie group. But for convenience, we will still stay in

the framework of real reductive Lie groups unless specified.
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The contra-positive of Theorem 3.0.1 gives an interesting non-unitarity crite-

rion.

Corollary 3.0.2. Let π be an irreducible (g0, K)-module; if ε(π) 6= δ(π) then π is

not unitary.

3.1 Compact Groups

Theorem 3.0.1 easily leads to the following result for compact groups:

Corollary 3.1.1. Let G be a compact group (specifically, G can be a finite group)

and let π be an irreducible representation of G, then ε(π) = δ(π).

By analyzing the symmetric/skew-symmetric form on V (see [4] for details)

we can compute δ(π) the following way:

Proposition 3.1.2 (Proposition 6.8, [4]). Let G be a compact Lie group, (π, V ) be

an irreducible complex representation of G with character Θπ: G→ C; then

∫
Θπ(g2) dg =



1 ⇔ V is of real type

0 ⇔ V is of complex type

−1 ⇔ V is of quaternionic type

or simply:

δ(π) =

∫
Θπ(g2) dg

Here we use the normalized measure on G.

Apply Proposition 3.1.2 to finite groups, we get the following:
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Proposition 3.1.3. Let G be a finite group, (π, V ) be an irreducible representation

of G and Θπ be the global character of (π, V ). Then

ε(π) = δ(π) =
1

|G|
∑
g∈G

Θπ(g2).

Chapter 4: Finite-Dimensional (g0, K)-Modules

4.1 Introduction

It is a well known fact that the Frobenius-Schur indicator of finite-dimensional

representations of connected complex reductive groups is given by a particular

value of the central character. In this section, we will establish a relationship be-

tween the Frobenius-Schur indicator and the Real-Quaternionic indicator of finite-

dimensional self-conjugate representations of G, and thus give a formula for the

Real-Quaternionic indicator.

In section 4.3, the formula for Frobenius-Schur indicator, namely ε(π) =

χπ(z(ρ∨)), is stated in Theorem 4.3.3. The rest of section 4 is devoted to estab-

lishing a relationship between ε and δ. It turns out

δ(π) = χπ(x2)ε(π) (4.1)

for Hermitian representations. x ∈ K is the strong real form given by G (Def-

inition 4.4.1). This equation therefore gives a formula for the Real-Quaternionic
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indicator of finite-dimensional Hermitian representations

δ(π) = χπ(x2)χπ(z(ρ∨))

The intuition behind Equation 4.1 lies in Lemma 4.3.2 and Remark 11. ε is

independent of the real form but δ is dependent; therefore it is natural that the two

are linked by the strong real form x. The way x appears in this relationship is also

very natural. In the proof of Theorem 3.0.1, we used the positive-definite invariant

Hermitian form that unitary representations possess in order to show ε = δ. In

general, Hermitian forms may not be positive-definite. However, as long as we stick

with finite-dimensional (g0, K)-modules, we will always have a c-invariant Hermitian

form that is positive-definite. The extra term we have to introduce in order to use the

c-form is exactly x. The strong real form x relates the ordinary invariant Hermitian

form and the c-invariant Hermitian form.

The case of non-Hermitian modules only appears when the group G is not of

equal rank. In that case, we introduce the extended group γG (Definition 4.4.4).

We then compute the δ-indicator of the induced module, which is the same as the

δ-indicator of the original module.

4.2 Hermitian (g0, K)-Modules

Definition 4.2.1. We call a (g0, K)-module (π, V ) Hermitian when it is isomorphic

to its Hermitian dual (Definition 2.2.2), i.e., π ∼= πh. Or equivalently, there exists a

Hermitian form 〈, 〉 on V such that it is (g0, K)-invariant.

In this section, we assume the (g0, K)-module (π, V ) is irreducible, Hermitian
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and self-conjugate. By Lemma 2.2.2, these imply that π is self-dual. Therefore both

ε(π) and δ(π) exist.

Let 〈, 〉 be a (g0, K) invariant Hermitian form, B : V × V → C a (g0, K)

invariant bilinear form. Define J : V → V as in the proof of Theorem 3.0.1:

B(v, w) = 〈v,J (w)〉

J is clearly conjugate linear, (g0, K) equivariant and non-zero. By the same calcu-

lation we did for Theorem 3.0.1, we obtain:

ε(π)δ(π) = sgn

(
〈J (v),J (w)〉
〈w, v〉

)
= sgn

(
〈J (v),J (w)〉
〈v, w〉

)
(4.2)

However, the determining of the sign function is not easy since the Hermitian form

may not be positive-definite. The goal of the rest of this section is to determine the

sign of the right hand side.

In order to do so, we invoke the c-invariant Hermitian form.

4.2.1 Hermitian Forms on (g, K(C))-Modules

Our main objects of study are (g0, K)-modules (π, V ). However, in this section,

a convenient setting are the (g, K(C))-modules (π(C), V ) which are the complexifi-

cations of (π, V ). They are essentially the same thing, see Theorem 2.3.1.

The relation between δ and ε indicator depends fundamentally on the relation

between two different invariant Hermitian forms on (π(C), V ). Namely the σ0 in-

variant Hermitian form and the σc invariant Hermitian form. We will define these

notions.
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Consider the real forms σ0 and σc of G(C) introduced at the end of section 2.4.

They are naturally real structures of the pair (g, K(C)) (for details about real struc-

ture see Section 8 of [7]). Suppose σ is a real structure of (g, K(C)); we can define

the notion of σ-Hermitian dual and σ-invariant Hermitian form.

Definition 4.2.2. Suppose (π, V ) is a (g, K(C))-module. The σ-Hermitian dual of

(π, V ) is denoted (πh,σ,V h)

πh,σ : K(C)→ GL(V h), πh,σ(k) = [π(σ(k−1)]h ∀k ∈ K(C)

The operator π(k)h is the Hermitian transpose of the operator π(k) (see Section 8

in [7]).

Remark 9. 1. The relation σ0 ◦ σc = θ implies [πh,σ0 ]h,σc ∼= πθ

2. Recall that π is a (g0, K)-module, π(C) denotes the corresponding (g, K(C))-

module (Definition 2.3.3). The following equation relates their Hermitian du-

als:

(πh)(C) ∼= π(C)h,σ

where σ is the real form corresponding to the real group G.

Definition 4.2.3. [7, Definition 8.6] Suppose (π, V ) is a (g, K(C))-module, a σ-

invariant Hermitian form on V is a Hermitian pairing 〈, 〉σ on V satisfying

〈X · v, w〉σ = 〈v,−σ(X) · w〉σ ∀X ∈ g, v, w ∈ V

〈k · v, w〉σ = 〈v, σ(k−1) · w〉σ ∀k ∈ K(C), v, w ∈ V
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such a form may be identified with an intertwining operator

T ∈ Homg,K(C)(π, π
h,σ)

with the Hermitian condition: T = T h

Lemma 4.2.1. A (g, K(C))-module (π, V ) has a σ-invariant Hermitian form if and

only if π ∼= πh,σ.

In this thesis, we are particularly interested in two invariant Hermitian forms,

namely 〈, 〉σ0 and 〈, 〉σc . We sometimes call the former the ”ordinary Hermitian

form” and the latter “c-invariant Hermitian form”. It is the focus of this section to

establish the connection between the two invariant Hermitian forms.

First we introduce the concept of extended pair.

Definition 4.2.4. [7, Definition 8.12] Let µ be an automorphism of the pair

(g, K(C)), and λ be an element of K(C) such that

µ2 = Ad(λ) λ ∈ K(C)

is an inner automorphism of the pair (g, K(C)). The corresponding extended group

is the extension

1→ K(C)→ µK(C)→ Z/2Z→ 1

with a specified generator µ1 mapping to 1 ∈ Z/2Z, and subject to the relation

µ1kµ
−1
1 = µ(k) for k ∈ K(C), and µ2

1 = λ. This extended group acts by automor-

phisms on g, and we call (g, µK(C) an extended pair.
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Proposition 4.2.2. Suppose (π, V ) is an finite-dimensional (g, K(C))-module, and

V has a non-degenerate σc-invariant Hermitian form 〈, 〉σc, unique up to a real

multiple. Then:

1. The following are equivalent:

(a) There is a non-degenerate σ0-invariant Hermitian form 〈, 〉σ0. It is unique

up to a real multiple.

(b) (π, V ) is isomorphic to its twist by θ:

D : (π, V ) ∼= (πθ, V )

In this case D is unique up to a complex multiple.

Assuming θ2 = Ad(λ) for some λ ∈ K(C), then (a) and (b) are also equivalent

to the following.

(c) The (g, K(C))-module V extends to a (g, θK(C))-module with θ acting

as D subject to the additional requirement that D2 = π(λ). If any such

extensions exist then there are exactly two. The operators D differ by

multiplication by ±1.

Assuming from now on the condition of (c) is satisfied, and the operator D is chosen

to be that in (c). Furthermore, assume 〈λ · v, λ · w〉σc = 〈v, w〉σc.

2 There is a non-zero complex number ξ so that

D−1 = ξD

on V , and |ξ|2 = 1
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3 The form 〈v, w〉′ = 〈D(v), D(w)〉σc is again a σc-invariant Hermitian form, so

there exists a real number ω such that

〈D(v), D(w)〉σc = ω〈v, w〉σc

4 The scalar ω is ±1.

5 If ζ is a square root of ωξ Then

〈v, w〉σ0 := ζ−1〈D(v), w〉σc = ζ〈v,D(w)〉σc

is a σ0-invariant Hermitian form on V .

Proof. It is easy to verify that any σc-invariant Hermitian form differ by a real

multiple from 〈, 〉σc , because the condition 〈v, w〉σc = 〈v, w〉σc .

(a)⇒ (b): The existence of σ-Hermitian form is equivalent to the isomorphism between

π and πh,σ0 . From the assumption of this proposition and 1, we know:

π ∼= πh,σ0 π ∼= πh,σc

Therefore

πh,σ0 ∼= πh,σc

Take the σc-Hermitian dual of both sides:

[πh,σ0 ]h,σc ∼= [πh,σc ]h,σc ⇒ πθ ∼= π

(b)⇒ (a): Following similar arguments as above, this is not hard to show.
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(b)⇔ (c): The reason for assuming θ2 = Ad(λ) is because it’s required for defining the

extended pair. The equivalence is an immediate consequence of basic Clifford

theory.

Proof of 2: We know that θ is the Cartan involution, more specifically, it is an involution.

So θ2 = Id on K(C) and λ ∈ Z(K(C)). This implies that π(λ) = D2 acts on

V by a complex scalar, call it ξ−1. Then it is immediate that D−1 = ξD.

It remains to show that |ξ| = 1. Consider the equation D−1 = ξD, square

both sides: D−2 = ξ2D2. For any v, w ∈ V we have

〈D−2(v), w〉σc = 〈ξ2D2(v), w〉σc ⇒ 〈λ−1 · v, w〉σc = 〈ξ2λ · v, w〉σc

⇒ 〈v, λ · w〉σc = ξ2〈v, λ−1 · w〉σc ⇒ D2 = ξ2D−2 ⇒ |ξ|4 = 1⇒ ξξ = 1

Proof of 3: It’s clear that 〈, 〉′ is sesquilinear and Hermitian. It remains to show that it is

σc-invariant:

〈X · v, w〉′ = 〈v,−σc(X) · w〉′

It is useful to write out the intertwining property of the isomorphism D first:

D(π(X)v) = [πθ(X)](D(v))

The σc-invariant claim follows after a short calculation:

〈X · v, w〉′ = 〈D(X · v), D(w)〉σc = 〈X ·θ D(v), D(w)〉σc

= 〈θ(X) ·D(v), D(w)〉σc = 〈D(v),−σc(θ(X)) ·D(w)〉σc

= 〈D(v),−θ(σc(X)) ·D(w)〉σc = 〈D(v),−D(σc(X) · w)〉σc

= 〈v,−σc(X) · w〉′ ∀X ∈ g
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A similar argument proves the σc-invariance for all k ∈ K(C).

Since 〈, 〉′ is another σc-invariant Hermitian for on the irreducible representa-

tion (π, V ), it differ by a real scalar from 〈, 〉σc . We denote this real scalar

ω.

Proof of 4:

〈D2(v), D2(w)〉σc = ω〈D(v), D(w)〉σc = ω2〈v, w〉σc

we know that D2 acts on V by π(λ) where λ ∈ K(C), therefore we have

〈D2(v), D2(w)〉σc = π(λ)π(λ)〈v, w〉σc = ξ−1ξ−1〈v, w〉 = 〈v, w〉σc . This implies

ω2 = 1, i.e., ω = ±1.

Proof of 5: The form 〈, 〉σ0 is clearly sesquilinear, it is also Hermitian:

〈w, v〉σ0 = ζ−1〈D(w), v〉σc = ζ−1〈v,D(w)〉σc = ζ−1ω−1〈D(v), D2(w)〉σc

= ζ−1ω〈D(v), ξ−1w〉σc = ζ−1ωξ−1〈D(v), w〉σc = ζ−1ωξ〈D(v), w〉σc

= ζ〈D(v), w〉σc = ζ−1〈D(v), w〉σc = 〈v, w〉σ0

Here we used the fact that |ζ|2 = 1. It is an easy consequence of |ξ|2 = 1 and

|ω|2 = 1.

It remains to show that this form is σ0-invariant.

〈X · v, w〉σ0 = 〈v,−σ0(X) · w〉σ0

〈X · v, w〉σ0 = ζ−1〈D(X · v), w〉σc = ζ−1〈θ(X) ·D(v), w〉σc

= ζ−1〈D(v),−σc(θ(X)) · w〉σc = ζ−1〈D(v),−σ0(X) · w〉σc

= 〈v,−σ0(X) · w〉σ0

Similar calculation applies to all k ∈ K(C).
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Lemma 4.2.3. A (g0, K)-module (π, V ) is Hermitian if and only if the correspond-

ing (g, K(C))-module (π(C), V ) is σ0-Hermitian.

Proof. It is clear that the form is σ0-invariant for the g action on V since g =

{X + iY |X, Y ∈ g0} and σ0(X + iY ) = X − iY . If 〈, 〉 is a g0-invariant Hermitian

form then it is also σ0-invariant under the action of g.

The K(C)-invariance follows easily from Theorem 2.3.1 (2) and (3). The

equivalence of category (Theorem 2.3.1(3)) together with the uniqueness of restric-

tion and complexification implies (π, V ) ∼= (πh, V h) ⇒ (π(C), V ) ∼= (π(C)h,σ0 , V h).

The lemma follows.

4.3 The Frobenius-Schur Indicator

Theorem 4.3.1. [8, Ch.IX, 7.2, Proposition 1] Let G(C) be a connected complex

reductive Lie group, π an irreducible finite-dimensional self-dual representation of

G(C). Then

ε(π) = χπ(z(ρ∨)).

Here χπ is the central character of π, zρ∨= exp(2πiρ∨) and ρ∨ is the half sum of the

positive co-roots.

For proof, see [9, Lemma 5.2].

Lemma 4.3.2. Suppose G is a real form of G(C), π is an irreducible self-dual

finite-dimensional (g, K)-module. Let π(C) be the corresponding (g, K(C))-module,

27



therefore a representation of G(C). Then

ε(π) = ε(π(C)) = χπ(zρ∨)

Proof. That π is self-dual if and only if π(C) is self-dual is implied by the functori-

ality of the complexification.

Suppose π is self-dual and ε(π) = 1. Let B be a symmetric (g, K) invariant

bilinear form on V ; then it is also invariant under the action of g. If we can show π(C)

restricted on K is also orthogonal then we can conclude that π(C) is an orthogonal

(g, K(C))-module.

Since K is compact, by Theorem 3.1.1 δ(π) = ε(π) = 1. So the representation

is both orthogonal and of real type. Therefore π : K → O(n). By Theorem 2.3.1,

we know that the complexification is a covariant functor, therefore π(C) : K(C)→

O(n,C). Therefore π(C) is orthogonal, i.e., ε(π(C)) = 1.

Since π(C) can only be orthogonal or symplectic if it’s self-dual, therefore it

directly follows that ε(π) = −1 implies ε(π(C)) = −1.

Lemma 4.3.2 implies that the formula for ε of complex groups also applies to

any real form of that complex group.

Theorem 4.3.3. Suppose G is a real reductive group, and π is an irreducible finite-

dimensional self-dual representation of G. Then

ε(π) = χπ(z(ρ∨)).

Remark 10. Note that z(ρ∨) is fixed by every automorphism of G(C), so z(ρ∨) ∈

Z(G) for every real form G of G(C).
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Remark 11. The Real-Quaternionic indicator is dependent on the real form. This

can be illustrated by an example. Let G1 = SL(2,R) and G2 = SU(2), take

(π1, V ) and (π2, V ) to be the irreducible 2-dimensional representations of G1 and G2

respectively whose complexification is the irreducible 2-dimensional representation

of SL(2,C). The representation π1 is clearly of real type, because the explicit action

shows it preserves the 2-dimensional real vector space defined by restricting scalars

of the complex vector space V . On the other hand, it is not hard to see that

π2 preserves a skew-symmetric bilinear form, since G2
∼= Sp(1) and π2 is just the

defining representation of Sp(1) ⊂ H× on H. Therefore δ(π1) = 1 and δ(π2) = −1.

4.4 The Real-Quaternionic Indicator

We assume, for this section, that (π, V ) is a Hermitian (g0, K)-module, with

(g0, K)-invariant Hermitian form 〈, 〉. Furthermore we assume that π has real in-

finitesimal character. The reason for this is to ensure the existence of the σc-invariant

Hermitian form; see the following lemma.

Lemma 4.4.1. For every finite-dimensional (g, K(C))-module with real infinitesi-

mal character ( [6, Definition 5.4.11]), there always exists a σc-invariant Hermitian

form. In particular, when G is semi-simple, or when Z(G) contains no split torus,

every finite-dimensional representation has real infinitesimal character.

See Proposition 5.2.1.

Theorem 4.4.2. Let (π, V ) be an irreducible finite-dimensional (g0, K)-module with
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real infinitesimal character. Assume π is both self-conjugate and Hermitian; then

δ(π) = ε(π)χπ(x2)

where χπ is the central character of π and x is a strong real form given by the real

group G.

In order to prove this theorem, we need to consider two cases: 1. when G

is equal rank (Definition 4.4.1); 2. when G is unequal rank. The reason for this

dichotomy is that the D and λ we choose have different properties in the two cases.

Therefore the implementation of Proposition 4.2.2 in the proof of Theorem 4.4.2 is

different for the two cases.

4.4.0.1 G is Equal Rank

In this section, we assume G is an equal rank group.

Definition 4.4.1. Suppose G is a real reductive algebraic group and K = Gθ is a

maximal compact subgroup, then G is said to be equal rank if the rank of G is equal

to the rank of K. Equivalently, the automorphism θ of G is inner. In this case, a

strong involution for G is an element x ∈ G such that Ad(x) = θ. The definition of

unequal rank groups is the natural negation of the above conditions.

Thus K = CentG(x), so x ∈ Z(K), and x2 ∈ Z(K). It also follows that

x2 = z ∈ Z(G) ∩K.

Proposition 4.4.3. Let (π, V ) be a finite-dimensional irreducible (g0, K)-module

which is both self-conjugate and Hermitian, and G an equal rank reductive algebraic
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group. Then V possesses a σc-invariant Hermitian form 〈, 〉σc, and we can define

form 〈, 〉σ0 such that

〈v, w〉σ0 = ζ−1〈x · v, w〉σc

where ζ is a square root of χπ(z), and x is a strong involution for G. This form

is σ0-invariant. In particular, 〈, 〉σ0 is an ordinary invariant Hermitian form under

the actions of (g0, K).

Proof. We have already established that there exists a σc-invariant Hermitian form

for (π, V ) under these assumptions. The rest of the proposition is simply a special

case of Proposition 4.2.2, taking D to be π(x) and λ = x2 = z. In this case ω = 1,

ξ = ζ−2 and the square root of ωξ = ξ−1 is ζ.

We are downplaying the distinction between (g0, K)-modules and (g, K(C))-

modules, because the difference is not of essential importance to us and it may be

a potential distraction.

Proof of Theorem 4.4.2 when G is equal rank. Fix once and for all a σc-invariant

Hermitian form on V and an ordinary invariant Hermitian form 〈, 〉σ0 defined in

Proposition 4.4.3.

Recall Equation 4.2 is written in terms of the ordinary invariant Hermitian

form:

ε(π)δ(π) = sgn

(
〈J (v),J (w)〉σ0

〈v, w〉σ0

)

We rewrite this equation in terms of the σc-invariant Hermitian form 〈, 〉σc

ε(π)δ(π) = sgn

(
ζ−1〈x · J (v),J (w)〉σc

ζ−1〈x · v, w〉σc

)
= sgn(ζ−2)sgn

(
〈x · J (v),J (w)〉σc

〈x · v, w〉σc

)
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The definition of J implies directly that is is a (g0, K) invariant map. Since the

strong involution x is an element of Z(K), we have x · J (v) = J (x · v).

ε(π)δ(π) = sgn(ζ−2)sgn

(
〈J (x · v),J (w)〉σc

〈x · v, w〉σc

)

Set w = x · v, then

ε(π)δ(π) = sgn(ζ−2)sgn

(
〈J (w),J (w)〉σc

〈w,w〉σc

)

The c-invariant Hermitian is positive-definite, therefore

ε(π)δ(π) = sgn(ζ−2) = χπ(x2)

Here we used the fact that the central character of a self-dual representation is ±1

valued.

4.4.0.2 G is Unequal Rank

For an unequal rank group G, the Cartan involution θ is not inner. We can

still talk about strong involutions, and use them to define 〈, 〉σ0 from 〈, 〉σc . However

the strong real form of G won’t be an element of G, it is an element of the extended

group γG of G. Here γ is a certain distinguished involution in the inner class of θ.

We will define the distinguished involution and the extended group.

Definition 4.4.2. A splitting datum or pinning is a set (B,H, {Xα}) where B is a

Borel subgroup, H is a Cartan subgroup contained in B and {Xα} is a set of root

vectors for the simple roots of H in B.

Definition 4.4.3. An involution of G is said to be distinguished if it preserves a

pinning.
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We now define the distinguished involution γ we need. Here we follow [7]

closely.

Choose a maximal torus Tf ⊂ K and let Hf= CentG(Tf ). This is a funda-

mental Cartan of G. Let R = R(G,Hf ) be the roots of Hf in G. We can choose a

system of positive roots R+ so that θ(R+) = R+. This defines a Borel Bf containing

Hf .

Remark 12. The choice of R+ here can result in a different pinning hence a different

distinguished involution. However, the two distinguished involutions will be con-

jugate to each other by an element of G(C). Suppose P and P ′ are two different

pinnings corresponding to the different choices of R+, then there exists a g ∈ G(C)

such that conjugating by g takes P to P ′. The resulting distinguished involution γ

and γ′ are conjugate by Ad(g). Therefore γ and γ′ are equivalent as real forms and

γ2 = (γ′)2.

The simple root vectors Π = {Xα} are chosen in such a way that

γ(Xα) = Xθα α ∈ Π

Let γ be the distinguished involution in the inner class of θ that preserves the pinning

(Bf , Hf ,Π). We see that

γ2 = 1, γ ◦ θ = θ ◦ γ, γ ◦ σc = σc ◦ γ. (4.3)

With this distinguished involution, we define the extended group of G(C).

Definition 4.4.4. The extended group γG(C) for G(C) is the semi-direct product

γG(C) = G(C)o {1, γ}
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According to (4.3), γ preserves G, K, K(C). We can therefore define all the corre-

sponding extended groups γG, γK, and γK(C).

The strong real form for the real form G is an element

x = x0γ ∈ G(C)γ = γG(C)\G(C)

with the property that

Ad(x)|G(C) = θ.

Proposition 4.4.4. The strong real form x for the real form G satisfies:

1. x0 ∈ K and x2
0 = x2 ∈ Z(K).

2. x ∈ γK.

We would like to define 〈, 〉σ0 from 〈, 〉σc the same way we did in the last section.

However, the expression x · v does not make sense now that x is in the extended

group. To make sense of this action, we need to extend the (g0, K)-module (π, V )

to a (g0,
γK)-module. By Clifford theory, (π, V ) can be extended to a (g0,

γK)-

module if and only if π ∼= πγ. Lemma 4.4.1 implies that π ∼= πh,σc ; we are under

the assumption that all representations are Hermitian π ∼= πh := πh,σ0 . Therefore

π ∼= [πh,σ0 ]h,σc ∼= πθ ∼= πγ, the first isomorphism is because σ0 ◦ σc = θ, the second is

because θ is inner to γ. The (g0, K)-module (π, V ) can have two different extensions,

we call them π1 and π2. The difference between them is π1(γ) = −π2(γ).

Before giving the proof of Theorem 4.4.2, we need to prove some properties of

the extended modules.
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Lemma 4.4.5. Let (π, V ) be an irreducible finite-dimensional self-dual representa-

tion of G and π ∼= πγ. Then it has two extensions, denoted π1 and π2. Furthermore,

π1 and π2 are self-dual.

Proof. The distinction between finite-dimensional representations and their Harish-

Chandra modules is trivial for our purpose, so upon proving the claim for represen-

tations, the same claim for (g0, K)-modules should be immediate.

First of all we claim that (π1)∨ ∼= π1 or π2.

Proof of Claim: by definition of dual representation,

(π1)∨(γ) · f(v) = f(π1(γ−1) · v)

This action of γ extends π∨ because it intertwines π∨ and (π∨)γ:

V ∨ V ∨

V ∨ V ∨

π∨

(π1)∨(γ)

(π1)∨(γ)

(π∨)γ

It is elementary to check this:

[(π∨)γ(g) · [(π1)∨(γ) · f ]](v) = [π∨(γ(g)) · [(π1)∨(γ) · f ]](v)

= (π1)∨(γ) · f(π1(γ(g−1)) · v)

= f(π1(γ−1 · γ · g−1 · γ−1) · v) = f(π1(γg−1) · v)

[(π1)∨(γ) · [π∨(g) · f ]](v) = [π∨(g) · f ](π1(γ−1) · v) = f(π(g−1)π1(γ−1) · v)

= f(π1(γ−1g−1) · v)

So (π1)∨(γ) extends π∨, and since π∨ ∼= π, (π1)∨(γ) also extends π. It is either

π1 or π2.
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It turns out (π1)∨ ∼= π1, we will now prove this.

Since π is self-dual, it is equivalent to prove: (π1)∨ ∼= (π∨)1 . The notation

(π∨)1 is chosen so that π1
∼= (π∨)1:

(π∨)1(g) · f = ψ[π1(g) · ψ−1(f)]

where ψ is the representation isomorphism ψ : π ∼= π∨.

The idea of the proof is using the highest weight vector of π∨ and analyzing

how (π1)∨(γ) and (π∨)1(γ) act on it. The highest weight vector is defined with

respect to Hf and the pinning (Hf , Bf ,Π) (see discussion after Definition 4.4.3).

The reason for using the highest weight vector is that (π∨)1(γ) acts on it by a

scalar

(π∨)1(γ) · ϕ = c · ϕ;

see Lemma 4.4.6 below for proof. Consequently, (π∨)2(γ) · ϕ = −c · ϕ.

It is convenient to use proof by contradiction, i.e. to prove (π1)∨ � (π∨)2.

Note that a necessary condition for (π1)∨ ∼= (π∨)2 is:

(π1)∨(γ) · ϕ = −c · ϕ

because for any representation isomorphism ϕ : (π1)∨ ∼= (π∨)2, ϕ sends highest

weights to highest weights and therefore preserves the scalar by which γ acts. To

prove (π1)∨ � (π∨)2, we just need to show the action of (π1)∨ and that of (π∨)2 on

the highest weight vector are different.

Let v be the highest weight vector of π with highest weight λ; we claim that

the dual basis fσω0 ·v in V ∨ is the highest weight vector for π∨ with highest weight
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−ω0 · λ = λ, where σω0 is the element in the Tits group with respect to the pinning

(Hf , Bf ,Π) (see discussion after Definition 4.4.3). The reason we use this element

is:

γ(σω0) = σω0

We first verify that fσω0 ·v is indeed the highest weight vector for π∨, for H ∈ h(C):

π∨(H) · fσω0 ·v(σω0 · v) = fσω0 ·v(−H · σω0 · v) (by Definition of π∨)

= fσω0 ·v(−σω0σ
−1
ω0
Hσω0 · v) (by (g(C), K(C) module)

= fσω0 ·v(−σω0 · ω−1
0 (H) · v) (by Definition)

= −λ(ω0(H))fσω0 ·v(σω0 · v)

= −ω0(λ)(H)fσω0 ·v(σω0 · v). (Weyl group acts on weights)

Because the representation π is self-dual, −ω0(λ) = λ, this implies:

π∨(H) · fσω0 ·v = λ(H)fσω0 ·v.

Let’s see how (π1)∨(γ) acts on fσω0 ·v:

(π1)∨(γ) · fσω0 ·v(σω0 · v) = fσω0 ·v(π1(γ−1) · σω0 · v)

= fσω0 ·v(γ(σω0) · π1(γ) · v)

= fσω0 ·v(σω0 · c · v) = c · fσω0 ·v(σω0 · v).

However, on the other hand:

(π∨)2(γ) · fσω0 ·v(σω0 · v) = −[ψ(π1(γ) · ψ−1(fσω0 ·v))](σω0 · v).

Since ψ−1(fσω0 ·v) is going to be a highest weight vector of π and π1(γ) acts on that

by a scalar c, we have:

(π∨)2(γ) · fσω0 ·v(σω0 · v) = −c · fσω0 ·v(σω0 · v).
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Therefore, we have a contradiction:

(π1)∨(γ) · fσω0 ·v 6= (π∨)2(γ) · fσω0 ·v.

it has to be:

(π1)∨ ∼= (π∨)1
∼= π1.

Lemma 4.4.6. Let v be a highest weight vector of π with highest weight λ,

π1(γ) · v = c · v, c ∈ C∗.

Proof. Let φ denote this isomorphism π ∼= πγ

φ : V → V

πγ(g) · φ(v) = φ(π(g) · v).

Set the action of γ to be π1(γ)(v) := φ(v).

Consider the weight space decomposition of π. Let {λ, λ1, λ2, · · · , λn} be the

weights and {V, V1, V2, · · · , Vn} be the corresponding weight spaces, with λ the high-

est weight, V the highest weight space. The map γ sends V to the weight space of

λγ:

π(H) · γ(v) = γ(γ(H) · v) = γ(λγ(H) · v) = λγ(H) · γ(v)

the notation λγ(H) is defined as λ(γ(H)) By the uniqueness of the weight space

decomposition and the fact that γ is an isomorphism, we know that the action of γ

on V permutes the weights:

{λγ, λγ1 , · · ·λγn} = {λ, λ1, · · · , λn}.
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It turns out that twisting by γ does not change the order of the weights, thanks

to the considerate choice of based root datum and γ in [7]. More importantly, λγ

is still the highest weight of πγ. We give a brief proof of this fact: Since λ is the

highest weight, we have:

λ− λi =
∑
j∈S

αj

where αj ∈ R+ and R+ is the set of positive roots chosen to be preserved by θ. S

is some non-empty set, meaning we are summing over some subset of R+.

Twisting by γ, we have:

λγ − λγi =
∑
j∈S

αγj

By the construction of γ from θ, we conclude γ also preserves R+ and thus αγj

are again positive roots, so

λγ � λγi , ∀i

Therefore λγ = λ and

γ(v) = π1(γ) · v = c · v, c ∈ C∗

Lemma 4.4.7. Let (π, V ) be an irreducible finite-dimensional c-Hermitian repre-

sentation of G satisfying (π, V ) ∼= (πγ, V ). Then it has two extensions π1 and π2

and they are c-Hermitian.

Proof. The extended module π1 being c-Hermitian is equivalent to

π1
∼= [π1]h,σc
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It is easy to see that [π1]h,σc is also an extension of π. Because there are only

two extensions of π, we will prove the above isomorphism by contradiction. We will

show

[π1]h,σc � π2

Suppose there exists such an isomorphism

ψ : π2 → [π1]h,σc

[π1]h,σc(γ) · ψ(v) = ψ(π2(γ)v) (4.4)

Let v ∈ J such that π1(γ)v = cv some c ∈ C∗. Such vector exists because γ acts as

an isomorphism D : π → πγ and V is finite-dimensional.

By definition, π2(γ)v = −cv. We also know that ψ(v)(v) 6= 0 because the

c-Hermitian form on J is positive definite.

Equation 4.4 left hand side evaluate on v is

[π1]h,σc(γ) · ψ(v)(v) = ψ(v)(π1(γ−1)v) = ψ(v)(c−1v) = c−1ψ(v)(v)

right hand side evaluate on v equals to

−cψ(v)(v)

We know that |c| = 1, therefore in order for there to be an isomorphism ψ, c−1 = c

has to equal to −c which implies c = 0. Contradiction.

It is clear that π1
∼= πγ1 , so an immediate consequence is that π1

∼= [πh,σc1 ]γ ∼=

πh,σ01 . From the previous Lemmas, we see that the extended representations in-

herit many properties of the original representation. This is crucial in the proof of

Theorem 4.4.2. First, we state the parallel of Proposition 4.4.3.
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Proposition 4.4.8. Let (π, V ) be a finite-dimensional irreducible (g0, K)-module

which is both self-conjugate and Hermitian, G an unequal rank reductive algebraic

group. Suppose V possesses a σc-invariant Hermitian form 〈, 〉σc, then we define

form 〈, 〉σ0 such that

〈v, w〉σ0 = ζ−1〈x · v, w〉σc

where ζ is a square root of χπ(x2), and x ∈ γG is a strong involution for G. This

form is σ0-invariant. In particular, 〈, 〉σ0 is an ordinary invariant Hermitian form

under the actions of (g0, K).

Proof of Theorem 4.4.2 when G is unequal rank. Fix a σc-invariant Hermitian form

for (π, V ), denote it 〈, 〉σc . Define 〈, 〉σ0 to be as in Proposition 4.4.8. Through the

same steps as the proof when G is equal rank, we get

ε(π)δ(π) = sgn(ζ−2)sgn

(
〈x · J (v),J (w)〉σc

〈x · v, w〉σc

)

Recall that one important step in the proof of the theorem when G is equal rank is

that J is equivariant under the action of x and therefore we can take the x· inside

and set w = x · v thus proving the theorem. This is still true even though x is in

the extended group γG. All the Lemmas we introduced before are for the proof of

the fact that J is equivariant under the action of x.

Recall the definition of J is

B(v, w) = 〈v,J (w)〉σ0

Lemma 4.4.5 implies that B is also invariant under the action of γ hence of x. The

short discussion after Lemma 4.4.7 implies that the Hermitian form 〈, 〉σ0 is also
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invariant under the action of γ therefore of x. With these in mind, we see that the

map J intertwines the action of x:

〈v, x · J (w)〉σ0 = 〈x−1 · v,J (w)〉σ0 = B(x−1 · v, w) = B(v, x · w) = 〈v,J (x · w)〉σ0

⇒ x · J (v) = J (x · v). Therefore

ε(π)δ(π) = sgn(ζ−2)sgn

(
〈J (x · v),J (w)〉σc

〈x · v, w〉σc

)

Let w = x · v,

ε(π)δ(π) = sgn(ζ−2)sgn

(
〈J (w),J (w)〉σc

〈w,w〉σc

)
= sgn(ζ−2) = χπ(x−2) = χπ(x2)

This completes the proof of Theorem 4.4.2.

4.5 non-Hermitian Representations

We depart from the friendly territory of Hermitian representations, and now

consider (π, V ) to be a finite-dimensional irreducible non-Hermitian representation.

We still assume π ∼= π.

Having no invariant Hermitian form is a problem for us, since the techniques

we have used rely on Hermitian forms. Our approach for this section is to construct

a representation π̃ from π which is Hermitian. We then find the δ-indicator for π̃,

which turns out to equal to the δ-indicator of the original representation.

One implicit property of the group G in this section is that it is unequal rank.

This is because all finite-dimensional irreducible representations of an equal rank

group are Hermitian. Recall for an unequal rank group G, we defined a non-trivial

distinguished involution γ and extended groups γG(C), γG, γK, and γK(C).
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The (g0, K)-module (π, V ) cannot be extended to a (g0,
γK)-module, however

by Clifford theory, it can be induced irreducibly to a (g0,
γK)-module.

Definition 4.5.1. Let (π̃, Ṽ ) be the induced module π̃ = Ind
(g0,γK)
(g0,K) π. We will often

simplify the notation and write π̃ = Ind(π).

Lemma 4.5.1. The induced (g0,
γK)-module (π̃, Ṽ ) is irreducible, Hermitian and

self-conjugate.

Proof. Lemma 4.4.1 says that π ∼= πh,σc , therefore πh,σ0 ∼= πγ. The assumption that

π is non-Hermitian also implies that π � πγ. Therefore Clifford theory implies that

Indπ is irreducible.

It is elementary to verify that π̃h ∼= π̃h. We know that π̃h ∼= π̃γ ∼= π̃. Therefore

π̃ ∼= π̃h, i.e., π̃ is Hermitian.

For the proof of self-conjugacy, we want to show that π̃ ∼= π̃. We view Ṽ as

C⊗C,τ Ṽ = C⊗C,τ (V ⊕ γV ) = (C⊗C,τ V )⊕ (C⊗C,τ γV )

and Ṽ as

V ⊕ γV = (C⊗C,τ V )⊕ γ(C⊗C,τ V )

Define map

f : Ṽ → Ṽ

such that

(z ⊗ v1)⊕ (w ⊗ γv2) 7→ (z ⊗ v1)⊕ γ(w ⊗ v2)

It is elementary to check this map intertwines the two representations.
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Given the assumption that π ∼= π, we have

π̃ ∼= π̃ ∼= π̃

i.e., π̃ is self-conjugate.

This module (π̃, Ṽ ) turns out to have better properties than (π, V ). So we have

reason to believe that the same proof technique we used for Hermitian modules is

applicable here too.

Proposition 4.5.2. Let D : Ṽ → Ṽ θ be an isomorphism of the two (g0,
γK)-

modules, satisfying the property that D2(v) = λ · v, where λ ∈ γK. Let 〈, 〉σc be a

non-degenerate positive definite σc invariant Hermitian form on V . Define

〈ṽ, w̃〉σ0 := ζ−1〈D(ṽ), w̃〉σc = ζ〈ṽ, D(w̃)〉σc

with ζ, ω and ξ are defined the same as in Proposition 4.2.2. The form 〈, 〉σ0 is a

σ0-invariant Hermitian form on Ṽ .

The proof of Proposition 4.2.2 can be transferred here completely with no

essential change.

Theorem 4.5.3. Suppose (π̃, Ṽ ) is an irreducible Hermitian self-conjugate (g0,
γK)-

module. Then the δ-indicator of (π̃, Ṽ ) is given by

δ(π̃) = ε(π̃)χπ̃(x2).

Proof. Since π̃ is both Hermitian and self-conjugate, it is then self-dual. Let B :

V × V → C be a (g0,
γK)-invariant bilinear form on Ṽ .
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Fix once and for all a c-invariant Hermitian form 〈, 〉σc , let 〈, 〉σ0 be defined by

〈, 〉σc the way in Proposition 4.5.2.

Define J : Ṽ → Ṽ such that

B(ṽ, w̃) = 〈ṽ,J (w̃)〉σ0

J is clearly (g0,
γK)-invariant, conjugate linear and bijective.

A short calculation and replacing 〈, 〉σ0 by 〈, 〉σc gives:

ε(π̃)δ(π̃) = sgn(ζ−2)sgn

(
〈x · J (ṽ),J (w̃)〉σc

〈x · ṽ, w̃〉σc

)

Proposition 4.4.4 says x ∈ γK, then by definition, J intertwines the action of x:

ε(π̃)δ(π̃) = sgn(ζ−2)sgn

(
〈J (x · ṽ),J (w̃)〉σc

〈x · ṽ, w̃〉σc

)
.

Let w̃ = x · ṽ; we have

ε(π̃)δ(π̃) = χπ̃(x−2)⇒ δ(π̃) = ε(π̃)χπ̃(x2).

Lemma 4.5.4. Suppose (π, V ) is an irreducible (g0, K)-module (π̃, Ṽ ) its irreducibly

induced (g0,
γK)-module. If δ(π) and δ(π̃) both exist, then δ(π) = δ(π̃).

Proof. Since π is self-conjugate, there exists J : V → V conjugate linear and G

invariant. By definition of induced representation Ṽ = V ⊕ γV . Define J̃ : Ṽ → Ṽ

such that:

J̃ (v + γw) = J (v) + γJ (w), ∀v ∈ V, γw ∈ γV
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It is easy to see that J̃ is conjugate linear and γG-invariant. We will demonstrate

the calculation for γG-invariance. For g ∈ G:

J̃ (g · (v + γw)) = J̃ (g · v + γγ(g) · w) = J (g · v) + γJ (γ(g) · w)

= g · J (v) + γγ(g) · J (w) = g · J (v) + g · γJ (w)

= g · J̃ (v + γw)

and

J̃ (γ · (v + γw)) = J̃ (γv + zw) = γJ (v) + zJ (w) = γ(J (v) + γJ (w))

= γJ̃ (v + γw)

Then for v ∈ V :

δ(π)v = J 2(v) = J̃ 2(v) = δ(π̃)v

Theorem 4.5.5. Suppose (π, V ) is an irreducible self-conjugate (g0, K)-module with

real infinitesimal character and π is not Hermitian. Then the δ-indicator of π is:

δ(π) = χπ(x2)ε(π̃)

where π̃ is the irreducible module Ind(π).

Remark 13. The indicator ε(π̃) is understood when G is simple; in that case the

Chevalley involution C is either trivial or inner to γ. The formula for ε(π̃) is given

in [9]. The author predicts that in the case of G semi-simple and reductive, a double

extended group of G is needed for understanding the formula δ(π) = χπ(x2)ε(π̃).
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Chapter 5: Infinite-Dimensional (g0, K)-Modules

In this chapter, our main objects of interest are the irreducible admissible

representations and their Langlands parameters. In Section 5.1, we give a brief

introduction to the Langlands classification for representations of G. Many nota-

tions will also be introduced here. We will then restrict our attention on the self-

conjugate irreducible modules. Furthermore, we will only consider the modules with

real infinitesimal character. The reason for this assumption is that the c-invariant

Hermitian form is guaranteed to exist in this case, and it will be positive-definite on

the lowest K-types [6, 5.4.18].

5.1 A Brief Introduction to the Langlands Classification

References for the details of the Langlands classification are [10] and [7]. Here

we follow [7] closely.

Definition 5.1.1. [7, Theorem 6.1] Suppose G is the group of real points of a

connected complex reductive algebraic group. Then there is a one-to-one corre-

spondence between the infinitesimal equivalent classes of irreducible quasi-simple

representations of G and G-conjugacy classes of triples

Γ = (H, γ,R+
iR)
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subject to the following requirements.

1. The group H is a Cartan subgroup of G: the group of real points of a maximal

torus of G(C) defined over R.

2. The character γ is level one character of the ρabs double cover of H. Write

dγ ∈ h∗ for its differential.

3. The roots R+
iR are a positive system for the imaginary roots of H in g.

4. The weight dγ is weakly dominant for R+
iR.

5. If α∨ is real and 〈dγ, α∨〉 = 0 then γq(mα) = +1 [7, Definition 5.7].

6. If β is simple for R+
iR and 〈dγ, β∨〉 = 0 then β is non-compact.

We call Γ a Langlands parameter.

Attached to each equivalence class of Langlands parameter Γ is a standard

(g0, K)-module I(Γ), and it has a unique irreducible quotient module J(Γ). The

correspondence is

Γ↔ J(Γ)

I will give a summary of Langlands’ construction of I(Γ). First we define some

notations. Let T = Hθ be the compact subgroup of H. Write h0 = t0 + a0 for the

decomposition of the real Lie algebra of H into +1 and −1 eigenspaces of θ. Define

A = exp(a0) to be the identity component of the maximal split torus of H. Note

that the group A is isomorphic to its Lie algebra and

H = T × A
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Let MA = CentG(A) be the Langlands decomposition of the centralizer of A in G.

The compact group T is a compact Cartan subgroup of M , and the parameters

Λ = (T, γ|T̃ , R
+
iR)

are Harish-Chandra parameters for a limit of discrete series representation D(Λ) ∈

M̂ . Here T̃ is the ρiR double cover of T . For more information about this cover,

see [7]. Now let

ν = γ|A ∈ Â.

Choose a parabolic subgroup P = MAN of G such that ν is weakly dominant for

the weights of a in n. Then the standard representation I(Γ) can be realized as

Iquo(Γ) = IndGPD(Λ)⊗ ν ⊗ 1

We also use Iquo(Γ) to denote the Harish-Chandra module of the standard represen-

tation. This module has a unique irreducible quotient J(Γ). The correspondence in

Theorem 5.1.1 is Γ↔ J(Γ).

The construction of the standard module inspires another expression of the

Langlands parameter. Given Langlands parameter Γ, let

Λ = (T, γ|T̃ , R
+
iR)

be the discrete Langlands parameter associated to Γ, and

ν = γ|A ∈ HomC(a0,C) = a∗0

be the continuous parameter for Λ. Then Γ can also be written as (Λ, ν); thus

I(Γ) = I(Λ, ν) and J(Γ) = J(Λ, ν). We will be using (Λ,ν) rather than Γ for the

rest of this thesis.
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Definition 5.1.2. We say a character ν of A is real if it is a real-valued character,

i.e.,

ν ∈ a∗0(R) = HomR(a0,R)

Proposition 5.1.1. Suppose Γ = (Λ, ν) is a Langlands parameter, then

1. Two Langlands parameters are called equivalent if they are conjugate by G.

2. The lowest K-types of I(Λ, ν) all have multiplicity one, and they all appear in

the Langlands quotient J(Λ, ν).

3. The infinitesimal character of J(Λ, ν) is real [6, Definition 5.4.11] if and only

if ν ∈ a∗0 is real (Definition 5.1.2).

5.2 Non-Unitary Modules

The benefit of the unitarity condition is that with a positive-definite invariant

Hermitian form, the sign of a certain fraction is easily determined as can be seen

in the proof of Theorem 3.0.1. For non-unitary modules, our tool for determining

signs is the c-invariant Hermitian form. By assuming real infinitesimal character,

we ensured the existence of the c-invariant form (Proposition 5.2.1).

Definition 5.2.1. Suppose Γ = (Λ, ν) is a Langlands parameter (Definition 5.1.1).

The c-Hermitian dual of (Λ, ν) is

Γh,σc = (Λ, ν)h,σc = (Λ, ν)

In particular, if the continuous parameter ν is real, then Γh,σc = Γ.
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Proposition 5.2.1. [7, Proposition 10.7] Suppose Γ = (Λ, ν) is a Langlands pa-

rameter for G, and Γh,σc = (Λ, ν) is the c-Hermitian dual parameter, then

1. The c-Hermitian dual of a standard module with a Langlands quotient is a

standard module with a Langlands submodule

[I(Γ)quo]
h,σc = Isub(Γ

h,σc)

and vice versa.

2. The c-Hermitian dual of a irreducible quotient module is

[J(Γ)]h,σc = J(Γh,σc)

3. The irreducible quotient module J(Γ) admits a c-invariant Hermitian form if

and only if Γ is equivalent to Γh,σc.

4. J(Λ, ν) admits a c-invariant Hermitian form if and only if there exists w ∈

W (G,H), where H is a real Cartan subgroup of G, such that w · Λ = Λ and

w · ν = ν. In particular, if ν is real then J(Λ, ν) has a c-form.

5. Suppose ν is real, then any c-invariant Hermitian form on J(Λ, ν) has the

same sign on the lowest K-types. In particular, the form can be chosen to be

positive-definite on every lowest K-type.

Since we assume ν is real, there always will be a c-invariant Hermitian form

that is positive-definite on the lowest K-types. Therefore we can use this tool as

we have used it in the finite-dimensional case. The methods of computing the δ-

indicator is similar here with some additional discussion about lowest K-types.
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5.2.1 Modules for Equal Rank Groups

Let G be a equal rank (Definition 4.4.1) real reductive algebraic group (Def-

inition 2.4.4), (π, J(Λ, ν)) be an irreducible admissible quotient module of G with

Langlands parameter (Λ, ν) and ν real. Further assume that J(Λ, ν) is self-conjugate

(Definition 2.2.1).

Based on our assumption, G being equal rank and ν being real, we don’t have

to consider the non-Hermitian modules. Because

Proposition 5.2.2. If G is equal rank, and ν is real, then J(Λ, ν) is Hermitian.

Proof. We know

[J(Λ, ν)h,σc ]γ ∼= J(Λ, ν)h,σ0

G being equal rank implies that γ is the identity map. Therefore

J(Λ, ν)h,σc ∼= J(Λ, ν)h,σ0 .

By Proposition 5.2.1, ν real implies

J(Λ, ν) ∼= J(Λ, ν).

Therefore

J(Λ, ν) ∼= J(Λ, ν)h,σc ∼= J(Λ, ν)h,σ0

i.e., J(Λ, ν) is Hermitian.

We only consider the Hermitian modules.

Recall that the δ-indicator is given by the sign of a conjugate linear invariant

map J . Let 〈, 〉 be an invariant Hermitian form on J(Λ, ν). The assumptions that
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J(Λ, ν) is both Hermitian and self-conjugate implies that it is also self-dual, hence

there exists an invariant bilinear form B on J(Λ, ν). We define a conjugate linear

invariant map J as before (Equation 3.1):

B(v, w) = 〈v,J (w)〉

consequently we have

ε(π)δ(π) = sgn

(
〈J (v),J (w)〉
〈v, w〉

)
(5.1)

In this case, we have invariant Hermitian forms and c-invariant Hermitian

forms at our disposal. Proposition 4.2.2 still holds in the infinite-dimensional case.

Proposition 5.2.3. Suppose J(Λ, ν) is an admissible (g0, K)-module, and it admits

a c-invariant Hermitian form 〈, 〉σc. If G is equal rank, then define 〈, 〉σ0

〈v, w〉σ0 = ζ−1〈x · v, w〉σc = ζ〈v, x · w〉σc

where x ∈ K is the strong real form given by G. This form is a σ0-invariant

Hermitian form.

This is the same Proposition as Proposition 4.4.3 without the assumption of

finite-dimensionality.

Let’s rewrite Equation 5.1 in terms of a c-invariant Hermitian form using the

relation indicated by Proposition 5.2.3:

ε(π)δ(π) = sgn

(
〈J (v),J (w)〉
〈v, w〉

)
= sgn

(
ζ−1〈x · J (v),J (w)〉c

ζ−1〈x · v, w〉c

)

53



Since G is equal rank, x ∈ G. In particular, x ∈ K. By definition of J , it intertwines

the action of (g0, K). Therefore x · J (v) = J (x · v) and the equation becomes

ε(π)δ(π) = sgn

(
ζ−1〈J (x · v),J (w)〉c

ζ−1〈x · v, w〉c

)

Set x · v = w

ε(π)δ(π) = sgn

(
ζ−1〈J (w),J (w)〉c

ζ−1〈w,w〉c

)
= sgn(ζ−1ζ)sgn

(
〈J (w),J (w)〉c

〈w,w〉c

)

The main goal now is to determine the sign of the fraction 〈J (w),J (w)〉c

〈w,w〉c
.

Unlike the finite-dimensional case, the c-form for J(Λ, ν) may not be positive-

definite on the entire representation. However, by Proposition 5.2.1(5) it can be

made positive-definite on all of the lowest K-types [6, Definition 5.4.18]. We will

call the set of lowest-K types LKT for short

Lemma 5.2.4. The map J sends LKT to LKT. In particular, J takes λ LKT to

λ LKT.

Proof. Let λ be the highest weight of a lowest K-type, w be an element in the λ

weight space. Denote T ⊂ K the Cartan in K,

t · w = λ(t)w ∀t ∈ T

The element J (w) is in the λ weight space:

t · J (w) = J (t · w) = J (λ(t)w) = λ(t)J (w)

Since λ is a character of a compact group, namely compact Cartan T of K, λ is

purely imaginary valued:

λ = −λ
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therefore

||λ|| = || − λ||

is minimal among the K-types.

Proposition 5.2.1(5) and Lemma 5.2.4 indicates that the sign of 〈J (w),J (w)〉c

〈w,w〉c
is

1.

Theorem 5.2.5. Let G be an equal rank real reductive algebraic group, and J(Λ, ν)

an irreducible admissible Langlands quotient (g0, K)-module with Langlands param-

eter Γ = (Λ, ν) satisfying the conditions in Definition 5.1.1. Further assume that ν

is real and J(Λ, ν) is Hermitian and self-conjugate. Then

ε(π)δ(π) = χπ(x2)

where x ∈ G is the strong real form corresponding to G.

Proof. From the discussion after Proposition 5.2.1 and Lemma 5.2.4, we know:

ε(π)δ(π) = sgn(ζ−1ζ)

By the definition of ζ, and the proof of Proposition 4.2.2 (5) we have

ε(π)δ(π) = sgn(ζ−2) = χπ(x2)

Here we used the fact that the central character of a self-dual representation is ±1

valued.

5.2.2 Modules for Unequal Rank Groups

Let G be an unequal rank real reductive algebraic group, J(Λ, ν) be an irre-

ducible admissible Langlands quotient module of G. Assume that the continuous
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parameter ν is real to ensure the existence of c-form and the positive-definite prop-

erty of the form on lowest K-types. We consider self-conjugate modules only.

Lemma 5.2.6. Assume G and J(Λ, ν) satisfies all conditions stated in the beginning

of this section. Then J(Λ, ν) is Hermitian if and only if J(Λ, ν)γ ∼= J(Λ, ν).

Proof. The assumption ν real implies that J(Λ, ν) admits an c-invariant Hermitian

form by Proposition 5.2.1. This means

J(Λ, ν) = J(Λ, ν)h,σc

Since

[J(Λ, ν)h,σc ]h,σ0 ∼= J(Λ, ν)θ ∼= J(Λ, ν)γ

we have

J(Λ, ν)h,σ0 ∼= J(Λ, ν)γ

The claim follows.

We will divide the discussion into two parts. The first is for the Hermitian

modules, second is for the non-Hermitian modules.

5.2.2.1 Hermitian Modules

Now suppose J(Λ, ν) is Hermitian. This together with the assumption that

J(Λ, ν) is self-conjugate implies it is self-dual. Let 〈, 〉σ0 be an ordinary invariant

Hermitian form on J(Λ, ν) and B be an invariant bilinear form. We define J as

before

B(v, w) = 〈v, x · w〉σ0 .
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J is conjugate linear and (g0, K)-invariant. If we try to proceed like the previous

chapter, we will run into a problem, which is x /∈ G. This is because G is unequal

rank. The way we are going to solve this problem is by extending the representation

to the extended group γG (Definition 4.4.4).

By Lemma 5.2.6 and Clifford Theory, (π, J(Λ, ν)) can be extended to two

distinct (g0,
γK)-modules, denoted π1 and π2. The action of γ differs by a sign

between the two extensions

π1(γ) = −π2(γ).

We will prove some properties of the extended modules.

Lemma 5.2.7. If J(Λ, ν) admits a c-form, then its extension also admits a c-form.

Proof. The extended module π1 admitting a c-Hermitian form is equivalent to

π1
∼= [π1]h,σc

It is easy to see that [π1]h,σc is also an extension of J . Because there are only

two extensions of J , we will prove the above isomorphism by contradiction. We will

show

[π1]h,σc � π2

Suppose there exists such an isomorphism

ψ : π2 → [π1]h,σc

[π1]h,σc(γ) · ψ(v) = ψ(π2(γ)v) (5.2)

Let v ∈ J such that π1(γ)v = cv some c ∈ C∗. Such vector exists because γ acts as

an isomorphism D : J → Jγ and D is of finite order.
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By definition, π2(γ)v = −cv. We also know that ψ(v)(v) 6= 0 because the

c-Hermitian form on J is positive definite.

Equation 5.2 left hand side evaluated on v is

[π1]h,σc(γ) · ψ(v)(v) = ψ(v)(π1(γ−1)v) = ψ(v)(c−1v) = c−1ψ(v)(v)

The right hand side evaluated on v equals to

−cψ(v)(v)

−c = c−1 if and only if |c| = −1. This contradicts the fact that |c| ≥ 0 for all c ∈ C.

Therefore π1
∼= πh,σc1 .

Lemma 5.2.8. The extended module J1 is Hermitian.

This is an immediate consequence of Lemma 5.2.7 and Equation 2.1 and the

fact that θ and γ are inner to each other.

Theorem 5.2.9. Let G be an unequal rank real reductive algebraic group (Defini-

tion 2.4.4) and (π, J(Λ, ν)) be an irreducible admissible Langlands quotient module.

Further assume that ν is real and J(Λ, ν) is Hermitian. Then we have the following

equation:

δ(π) = ε(π)χπ(x2)κ(π)

where x ∈ γG is the strong real form given by G, and

κ(π) =


1 π1 is self-dual

−1 π1 is not self-dual
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Proof. Following the unequal rank part of the proof of Theorem 4.4.2 located after

Proposition 4.4.2 we arrive at

ε(π)δ(π) = sgn

(
ζ−1〈x · J (v),J (w)〉c

ζ−1〈x · v, w〉c

)
= sgn(ζ−2)sgn

(
〈x · J (v),J (w)〉c

〈x · v, w〉c

)
.

(5.3)

If the extended module J1 is self-dual, then B is invariant under the action of

x. Therefore

〈v,J (x · w)〉σ0 = B(v, x · w) = B(x−1 · v, w) = 〈x−1 · v,J (w)〉σ0 = 〈v, x · J (w)〉σ0

implies

J (x · v) = x · J (v) ∀v ∈ J(Λ, ν)

If the extended module J1 is not self-dual, then J∨1
∼= J2 since J∨1 is easily proven

to be an extension of J . We can take the isomorphism ψ : π2
∼= π∨1 and it will serve

as an (g0, K)-invariant bilinear form on J :

B(v, w) = ψ(v)(w) ∀v, w ∈ J.

The map ψ being an intertwiner means

ψ(π2(x)v) = π∨1 (x)ψ(v).

This together with the fact that x = x1γ implies

B(x · v, w) = B(π1(x)v, w) = ψ(π1(x)v)(w) = ψ(−π2(x)v)(w)

= −π∨1 (x)ψ(v)(w) = −ψ(v)(π1(x−1)w) = −B(v, x · w)

We define an index κ that takes the value 1 if J1 is self-dual and -1 if J1 is not

self-dual. Then

B(x · v, w) = κ(π)B(v, x−1 · w)
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This implies

x · J (v) = κ(π)J (x · v)

Equation 5.3 becomes

ε(π)δ(π) = sgn(ζ−2)sgn

(
〈κ(π)J (x · v),J (w)〉c

〈x · v, w〉c

)

= χπ(x2)κ(π)sgn

(
〈J (w),J (w)〉c

〈w,w〉c

)
By Lemma 5.2.4, J sends LKT to LKT. Since the c-form is positive-definite on all

LKT’s, the theorem easily follows.

5.2.2.2 Non-Hermitian Modules

Suppose J(Λ, ν) is not Hermitian. By Lemma 5.2.6, we know that Jγ � J .

This means we cannot extend J to a (g0,
γK)-module. Instead we can induce J to

an irreducible (g0,
γK)-module, denoted J̃ . We will proceed by discussing properties

of the induced module J̃ .

Lemma 5.2.10. If J has real infinitesimal character then J̃ has real infinitesimal

character.

Proof. The module J̃ restricted to (g0, K) splits into two modules J̃ = J + Jγ. The

action of a0 on J is by the real valued character ν. We will show that νγ is again

real valued. By definition θ acts on a0 by −1 and γ is inner to θ. I.e., θ = Ad(x0)◦γ

where x0 ∈ Hf by the discussion in [7, P80]. Therefore

νγ(X) = ν(γ(X)) = ν(x0θ(X)x−1
0 ) = ν(−X) = −ν(X).

Clearly νγ is real valued on a0.
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Proposition 5.2.11. [7, Proposition 12.7] Suppose J̃ is an irreducible (g0,
γK)-

module of real infinitesimal character. Then J̃ admits a non-degenerate c-invariant

Hermitian form that is unique up to a real scalar multiple. It can be chosen to be

positive-definite on the lowest γK-types of J̃ .

Proposition 5.2.12. The extended module J̃ is Hermitian and self-dual.

Proof. The twist of J̃ is IndJγ therefore isomorphic to J̃ . By Proposition 5.2.11

J̃ ∼= J̃h,σc . Therefore J̃ ∼= J̃h,σ0 .

It is elementary to prove that J̃ is self-conjugate given that J is self-conjugate.

It is a consequence that J̃ is self-dual.

Proposition 5.2.13. Assume G and J̃ satisfy the conditions in the beginning of

this section. Fix a strong real form x ∈ γK\K and x2 ∈ Z(K) acts on J as a scalar

ζ2, x2 also acts on Jγ by ζ2. Fix a c-invariant Hermitian form 〈, 〉c on J̃ which is

positive-definite on the lowest γK-types. If J̃ admits an invariant Hermitian form,

then we can define 〈, 〉0

〈ṽ, w̃〉0 = ζ−1〈x · ṽ, w̃〉c = ζ〈ṽ, x · w̃〉c

and it is a (g0,
γK)-invariant Hermitian form on J̃ .

Proof. This is again a consequence of Proposition 4.2.2 with λ replaced by x. The

verification of 〈, 〉0 being an ordinary invariant Hermitian form is elementary and

won’t be presented here.

Now we have shown that all the good properties that we want and J does not

have are possessed by J̃ . Also J̃ inherited the good aspects of J . For example, having
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a c-invariant Hermitian form etc. This enables us to use the previous arguments on

J̃ to obtain a formula for δ(π̃).

Theorem 5.2.14. Suppose (π̃, J̃) is the the induced module of J with J satisfying

all the conditions we set in this section. Then

δ(π̃) = ε(π̃)χπ̃(x2).

The proof of this Theorem is the same as that of Theorem 5.2.5 with J replaced

by J̃ .

Let’s come back to our main object of concern here δ(π). Lemma 4.5.4 shows

that δ(π) = δ(π̃); the proof applies in the infinite-dimensional case.

Theorem 5.2.15. Let G be a real reductive algebraic group which is unequal rank,

(π, J(Λ, ν)) be an irreducible admissible (g0, K)-module that is not Hermitian. Fur-

thermore, J is self-conjugate and ν is real (i.e., J has real infinitesimal character).

Then

δ(π) = ε(π̃)χπ(x2)

where π̃ = Ind
(g0,γK)
(g0,K) π and x ∈ γK\K is a strong real form given by G.

This theorem is a direct corollary of Theorem 5.2.14 and Lemma 4.5.4, with
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the additional observation that χπ(x2) = χπ̃(x2).

Appendix A: Kac Classification and Formulas for Real Forms

A.1 Introduction

In this appendix, our goal is to give formulas for real forms of some unequal

rank simple groups. We do this by revisiting the Kac classification, spelling out

some of the theories behind the classification and give computable formulas for real

forms (Theorem A.5.4). Some examples of calculating using these formulas are given

in Appendix A.5.

First, we fix some notations for this Appendix. G denotes a complex simple

adjoint Lie group of type A2n−1, or Dn, or E6, or F4. We consider only these types

because their Dynkin diagrams have non-trivial diagram automorphisms. We left

out type A2n because the quotient root system by a Cartan involution is possibly

non-reduced. Let G denote a group of real points of G (Definition 2.4.3). G could

be unequal rank (Definition 4.4.1). Let g0 denote the Lie algebra of G, g denotes

the Lie algebra of G. Consequently, g = g0 ⊗R C. Let θ be the Cartan involution

of G corresponding to G, γ the distinguished involution in the inner class of θ.

For the definition of γ see Section 4.4.0.2. Hf denotes the fundamental Cartan

(Section 4.4.0.2) of G, let Hf be a maximal torus of G such that Hf = Hσ0
f (σ0 is

defined in Section 2.4). Let T = Hγ
f and T= Hγ

f .
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The following definition of real form is what we will use in this appendix.

Definition A.1.1. A real form of G in the inner class of γ (or θ) is an equivalence

class of elements x ∈ Gγ (Definition 4.4.4), satisfying x /∈ G, and x2 ∈ Z(G). The

equivalence is by conjugation by G.

By the definition of γ (Definition 4.4.3), Hf is γ stable. The definition of T

implies that γ fixes every element in T. We define the following.

Definition A.1.2. Let

Hγ = Ho {1, γ}

and

Tγ = T× {1, γ} = T ∪ Tγ

The second definition is a direct product because γ acts on T trivially.

We give an outline of this appendix:

1. We prove that every real form is conjugate to an element in Tγ.

2. We consider the universal cover of Tγ. Two elements of Tδ are conjugate by

Wγ (Definition A.2.1) if and only if some lifts of them onto the universal cover

are conjugate by W̃γ (Definition A.3.2).

3. Find the affine Weyl group in the extended affine Weyl group W̃γ, thus deter-

mining the fundamental alcove (Section A.4).

4. Describe elements in the fundamental alcove that parametrize the real forms

(Lemma A.4.6).
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5. Give the classification of real forms in terms of labels of Kac diagrams (The-

orem A.5.3).

A.2 First properties of strong real forms

Let A:= H−γf = {h ∈ Hf |γ(h) = h−1}. The identity component of H−γf :=

{h ∈ Hf |γ(h) = h−1} is defined to be A. Then

Hf = TA, Hf = TA

Lemma A.2.1. After conjugation by G, we may assume

x = x0γ, x0 ∈ T

Proof. We first show that if x = x0γ is a real form, then x0 has to be a semi-simple

element in G.

Let θ = Ad(x). Keep in mind the fact:

Hf = CentG(T)

and γ fixes every element in T.

For an element h ∈ Hf , it is easy to see that θ(h) ∈ Hf because for all t ∈ T

θ(h)t = θ(ht) = θ(th) = tθ(h)

Therefore θ(h) ∈ ZG(T) = Hf .

On the other hand:

θ(h) = x0δ(h)x−1
0 = x0hx

−1
0 ⇒ h = θ(x0)θ(h)θ(x0)−1 ∀h ∈ Hf
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These facts combined show that θ(x0)−1 ∈ NormG(Hf ), therefore θ(x−1
0 ) is of

finite order in NormG(Hf )/Hf , i.e., a finite power of θ(x−1
0 ) is semi-simple, there-

fore θ(x−1
0 ) is semi-simple, thus x−1

0 is semi-simple; see [11, Chapter 2] for omitted

arguments.

We claim that there exists a γ-stable Cartan H1 of G such that x0 is an

element of H1. We prove this claim now. Let L be the identity component of

M = CentG(x0). Using simple algebra, it is easy to show γ(L) is the identity

component of CentG(γ(x0)). We already know γ(x0) = x−1
0 x2, x2 ∈ Z(G). This

gives:

γ(M) = CentG(x−1
0 x2) = CentG(x0) = M

It is not hard to see that the Levi L is γ-stable, so we take the γ-stable Cartan H1

in M, and then x0 has to be contained in H1.

Write H1 = T1A1 where T1 := (Hγ
1)0 and A1 := (H−γ1 )0. We next show that

x0 can be conjugated to an element in T1.

x0 ∈ H1 can be written as x0 = ta, since A2
1 = A1 (see the remark right after

this lemma); we take b ∈ A1 so that b2 = a−1, conjugate x with b:

bxb−1 = btaδb−1 = btaγ(b−1)δ = tab2δ = taa−1δ = tδ

Since x0 can be chosen to be in T1, which is a torus in the identity component

of K := Gγ, x0 can be then conjugated to an element in T by k ∈ K. Use k to

conjugate x:

kxk−1 = kx0δk
−1 = kx0γ(k−1)δ = kx0k

−1δ

This completes the proof of the lemma.
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Remark 14. Given γ a Cartan involution and H any γ stable Cartan in G, we may

write H = (C∗)a × (C∗)b × (C∗ × C∗)c, where γ acts trivially on the first a factors,

by inverse on the next b factors, and γ(s, t) = (t, s) on each of the last c terms.

γ(z1, · · · ,za, w1, · · · , wb, s1, t1, · · · , sc, tc)

= (z1, · · · , za, w−1
1 , · · · , w−1

b , t1, s1, · · · , tc, sc)

Hγ = (z1, · · · , za,±1, · · · ,±1, t1, t1, t2, t2, · · · , tc, tc)

H−γ = (±1, · · · ,±1, w1, · · · , wb, t−1
1 , t1, t

−1
2 , t2 · · · , t−1

c , tc)

Take the identity components:

T = (z1, · · · , za, 1, · · · , 1, t1, t1, t2, t2, · · · , tc, tc)

A = (1, · · · , 1, w1, · · · , wb, t−1
1 , t1, t

−1
2 , t2 · · · , t−1

c , tc)

Because A is a connected torus, it obvious that A2 = A.

Definition A.2.1. Define the set of inequivalent normalizers Wγ of Tγ in G to be:

Wγ = NormG(Tγ)/CentG(Tγ)

Lemma A.2.2. The real forms in the inner class of θ are parametrized by elements

x ∈ Tγ such that x2 ∈ Z(G), modulo the action of Wγ.

In order to express x using the root system ∆(G,Hf ), it is natural to seek the

help of the Lie algebra t of T. In the next subsection, we are going to introduce

the universal cover E of Tγ, which is isomorphic to t once we picked an origin. The

problem of classifying real forms will be moved up to this affine space E.
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A.3 The universal cover

Definition A.3.1. [12, Chapter 1.1] An affine space E over a field F is a set on

which a F -vector space V acts faithfully and transitively. The elements of V are

called translations of E, and the effect of a translation v ∈ V on x ∈ E is written

x+ v. If y = x+ v we write v = y − x.

Let π : E → Tγ be the universal cover. It is an affine space with translations

t. Recall the construction of universal cover. We pick a base point, in this case let’s

say γ, the fibers over y ∈ Tγ in E are homotopy classes of paths from γ to y.

E = {x : [0, 1]→ Tγ|x(0) = γ}/ ∼

π(x) = x(1), ∀x ∈ E

The action of t on E is as follows: for X ∈ t

(X + a)(r) = exp(2πirX) · a(r), ∀r ∈ [0, 1]

Pick an element γ̃ ∈ E, where γ̃(r) = γ, ∀r ∈ [0, 1]. This gives an isomorphism

t ∼= E

X 7→ X + γ̃

Moreover, π(X + γ̃) = exp(2πiX)δ for an arbitrary element X + γ̃ ∈ E.

Remark 15. The following is true by a well known property for universal covers:

for f : Tγ → Tγ a differentiable map, and for any points x, y ∈ E such that

f(π(x)) = π(y) there exists a unique differentiable map f̃ : E → E such that the

diagram
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E E

Tγ Tγ

π

f̃

f

π

commutes and f̃(x) = y. In this case we say f̃ covers f . The group of covers of the

identity map is isomorphic to the fundamental group π1(Tγ).

Definition A.3.2.

W̃γ = {w̃ : E → E|w̃ covers some w ∈ Wγ}

Lemma A.3.1. The real forms in the inner class of γ are parametrized by elements

x ∈ E such that π(x)2 ∈ Z(G), modulo the action of W̃γ

Proof. It is clear that w(t1γ) = t2γ if and only if for any x1, x2 where π(xi) = tiγ

there is a lift of w, call it w̃, such that w̃(x1) = x2. In other words, π : E → Tγ

factors to a bijection:

E/W̃γ ↔ Tγ/Wγ

This lemma is clearly equivalent to Lemma A.2.2

A.4 The extended affine Weyl group W̃γ

Let us first identify the elements in W̃γ that act by an affine Weyl group. More

specifically, the ones that fixes γ̃ and the ones that acts by a translation on E.

1. elements that fix γ̃:
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For an element w̃ ∈ W̃γ to fix γ̃, it has to be a lift from wg ∈ Wγ which fixes

γ, the notation wg means wg(tγ) = gtγg−1. It’s easy to see, such g has to be

in K.

So WK:= NormK(T)/CentK(T) is in bijection with the set of elements in W̃γ

that fix γ̃.

2. elements that acts by translation:

Translations on E are of the form: X + (Y + γ̃), where Y + γ̃ is an arbitrary

element in E. Suppose translation by X ∈ t is an element in W̃γ, that means

it is a lift of some element wg ∈ Wγ, i.e.,

gtγg−1 = π(X + Yt + γ̃) = exp(2πiX)tγ ∀t ∈ T

where Yt is some element in t such that exp(2πiYt) = t. It is not hard to see

that exp(2πiX) is in A ∩ T: let s = exp(2πiX) ∈ T

gγ(g−1) = s⇒ γ(g−1) = g−1s

gtγg−1 = gtγ(g−1)γ = gtg−1sγ = sgtg−1γ = stγ ⇒ g ∈ CentG(T) = Hf

Since Hf = TA, we can write g = tgag with tg ∈ T, ag ∈ A.

γ(g−1) = γ(a−1
g t−1

g ) = agt
−1
g = g−1s = a−1

g t−1
g s⇒ a2

g = s

In fact, each element in A∩T lifts to a translation on E, just take the square

root of that element in A to be the g in wg, since A and T are both closed

under taking square root.
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Therefore the set of pre-image of A ∩ T under the map exp(2πi−) is the set

of translations on E.

We now describe these elements in terms of Weyl groups and roots/co-roots.

First, let’s fix some notations. Let ∆(G,Hf ) be the set of roots of Hf in G, and

∆∨(G,Hf ) be the set of co-roots. Let R(G,Hf )= 〈∆(G,Hf )〉 be the root lattice,

and R∨(G,Hf )= Z〈∆∨(G,Hf )〉 be the co-root lattice.

The following lemma will be frequently used.

Lemma A.4.1. [13, Lemma 2.5] Let ∆cx(G,Hf ) be the subset of complex roots in

∆(G,Hf ). Suppose τ ∈ ∆cx(G,Hf ), one of the following conditions hold:

(1) 〈τ, γ(τ∨)〉 = 0, and τ∨ + γτ∨ = β∨ where β = τ |T ∈ ∆(K,T),

(2) 〈τ, γ(τ∨)〉 = −1, and τ∨ + γτ∨ = β∨ where β = τ + γτ ∈ ∆nc

In (1) we have implicitly used the inclusions β∨ ∈ ∆∨(K,T) ⊂ X∗(T) ⊂ X∗(Hf ) =

R∨(G,Hf ).

Lemma A.4.2.

{X ∈ t| exp(2πiX) ∈ A ∩ T} = R∨K ∪ {
1

2
α∨|α ∈ RK short }

where RK is the root lattice of ∆(K,T) and R∨K is the coroot lattice.

Proof. It is clear that

{X ∈ t| exp(2πiX) ∈ A ∩ T} = {X ∈ t| exp(2πiX) ∈ A}
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because X ∈ t implies exp(2πiX) ∈ T. The following inclusions are also elementary

to prove.

{X ∈ t|X ∈ ker(exp)} ⊆ {X ∈ t| exp(2πiX) ∈ A} ⊆ {1

2
X|X ∈ ker(exp), X ∈ t}

The assumption that G is adjoint allows us to identify ker(exp) with R∨K. Let

L = {X ∈ t| exp(2πiX) ∈ A}

Claim: γ∨ ∈ L ⇔ exp(2πiγ∨) = exp(2πiµ∨) where γ(µ∨) = −µ∨.

From the claim, we have β∨ ∈ L ⇔ β∨ − µ∨ ∈ X∗(Hf ) ⇔ β∨ − µ∨ = τ∨,

some τ∨ ∈ X∗(Hf ) (X∗(Hf ) is just R∨(G,Hf ) by the assumption that G is adjoint.)

Apply (1 + γ) to both sides of β∨ − µ∨ = τ∨, we get

(1 + γ)β∨ = (1 + γ)τ∨, τ∨ ∈ R∨(G,Hf )

Therefore for any α∨ ∈ R∨K, α∨

2
∈ L ⇔ (1 + γ)α

∨

2
= (1 + γ)τ∨, some τ∨ ∈

R∨(G,Hf ). I.e.,

α∨ = τ∨ + γ(τ∨), τ∨ ∈ R∨(G,Hf )

Let’s see which element in R∨K are of the form τ∨ + γτ∨, τ∨ ∈ R∨(G,Hf ). By

Lemma A.4.1, we can conclude (not including type A2n) for τ ∈ ∆cx(G,Hf ), the

coroot corresponding to β = τ |T is of such form, i.e., {1
2
β∨|β ∈ RK short } is in L.

This completes the proof.

Lemma A.4.3.

R∨K ∪ {
1

2
α∨|α ∈ RK short } =

1

l
RK

where l is the square of the length of any short root.
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Proof. Because RK only has two root lengths, for short roots ||α||2 = l and long

root ||β||2 = 2l, we can easily calculate

R∨K = {2α

l
|α ∈ RK short} ∪ {2β

2l
|β ∈ RK long}

Therefore

R∨K ∪ {
1

2
α∨|α ∈ RK short } = {α

l
|α ∈ RK} =

1

l
RK

Definition A.4.1. Let Waff be the group of displacements on E generated by the

Weyl group WK and the translations t(1
l
α), α ∈ RK, so that Waff is the semidirect

product of WK and t(1
l
RK):

Waff = WK n t(
1

l
RK)

Remark 16. The specific action of WK on t(1
l
RK) is:

sαt(
1

l
β)sα = t(sα(

1

l
β)) ∀α, β ∈ RK

The usual reflection on RK is:

sα(β) = β − (β, α)α∨

and on R∨K:

sα(β∨) = β∨ − 2(β, α)

(β, β)
α∨

The reflection on E is defined as follows [12, P2]:

sα(x) = x− α∨(x)Dα = x− α(x)Dα∨ = x− α(x)α∨
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So for any element x ∈ E:

sαt(
1

l
β)sα(x) = sαt(

1

l
β)(x− α(x)α∨) = sα(

1

l
β + x− α(x)α∨)

=
1

l
β + x− α(x)α∨ − α(

1

l
β + x− α(x)α∨)α∨

=
1

l
β + x− α(x)α∨ − 1

l
α(β)α∨ − α(x)α∨ + α(x)α(α∨)α∨

=
1

l
β − 1

l
α(β)α∨ − 2α(x)α∨ + 2α(x)α∨ + x

= t(sα(
1

l
β))(x)

The last step in detail:

α(
1

l
β) =


α(β∨) β long

α(1
2
β∨) β short

=


2(α,β)
(β,β)

β long

(α,β)
(β,β)

β short

1

l
β − α(

1

l
β)α∨ =


β∨ − 2(α,β)

(β,β)
α∨ β long

1
2
β∨ − (α,β)

(β,β)
α∨ β short

=


sα(β∨) = sα(1

l
β) β long

1
2
sα(β∨) = sα(1

l
β) β short

Lemma A.4.4. Waff embeds in W̃γ.

Proof. For elements wk ∈ WK , it maps to a unique lifting w̃k ∈ W̃γ which sends γ̃ to

γ̃. For an element t(X) in 1
l
RK, it is the lifting of wa ∈ Wγ where a2 = exp(2πiX)

(see the beginning of the section about elements that acts by translation).

Proposition A.4.5. The fundamental alcove Λ of Waff on E is bounded by the

hyperplanes of {α̃0, α̃1, · · · , α̃l} where α1, · · · , αl are the simple roots in ∆(K,T),

and α0 is the highest short root in ∆(K,T).

α̃i =


(α0,

1
2
) i = 0

(αi, 0) 1 ≤ i ≤ l

note that (α, c) denotes an affine functional on E: (α, c)(X + γ̃) = α(X) + c.
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Proof. Using the well developed theory in [12, Ch1-2] about affine Weyl groups, we

only need to recognize that

Waff = WK n
1

l
(R∨K)∨

by [12], the fundamental alcove is bounded by H(αi,0), 1 ≤ i ≤ l and H(−ϕ, 1
l
) where

ϕ is the highest (long) root in R∨K. The notation

H(α,c) = {x ∈ E|(α, c)(x) = 0}

denote the hyperplane of (α, c).

ϕ∨ is the highest short root in RK, call that α0. ϕ∨ = α0 ⇒ α∨0 = ϕ. So

H(−ϕ, 1
l
) = H(−α∨0 ,

1
l
) = H

(− 2α0
l
, 1
l
)

= H(−α0,
1
2

). The claim follows.

Lemma A.4.6. The real forms in the inner class of θ are parametrized by elements

in the closure of the fundamental alcove x ∈ Λ such that π(x)2 ∈ Z(G), modulo the

action of W̃δ/Waff

A.5 Formula for strong real forms

The elements in the fundamental alcove Λ can be described using its vertices.

The vertices x0, · · ·xl satisfy:

α̃j(xi) = 0, j 6= i

a simple calculation gives:

xi =


γ̃ i = 0

γ∨i
2mi

+ γ̃ 1 ≤ i ≤ l
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where γ∨i are the fundamental coweights of K with respect to T and

α0 =
l∑

i=1

miαi

mi are the labels for simple roots, the default label for α0 is m0 = 1. Note that

α̃i(xi) =
1

2mi

∀i

Lemma A.5.1. We may parametrize Λ as

{
l∑

i=0

λixi|
l∑

i=0

λi = 1, λi ≥ 0}

equivalently, Λ can also be parametrized by

{(a0, · · · , al)|ai ≥ 0,
l∑

i=0

miai =
1

2
}

Proof. We just need to construct a bijection between the two sets:

Given x =
∑l

i=0 λixi ∈ Λ, let

ai = α̃i(x),∀i⇒ ai =
λi

2mi

≥ 0,∀i

l∑
i=0

miai =
l∑

i=0

λi
2

=
1

2

l∑
i=0

λi =
1

2

Given (a0, · · · , al) where ai ≥ 0 and
∑l

i=0 miai = 1
2
, let

λi = 2miai,∀i

and

x =
l∑

i=0

λixi

x is an element in Λ because
∑l

i=0 λi =
∑l

i=0 2miai = 1
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Lemma A.5.2. Let (a0, · · · , al) be the parameter for X ∈ Λ, π(X)2 ∈ Z(G) if and

only if 2ai ∈ Z ∀i.

Proof. X can be expressed as X =
∑l

i=0 λixi, where λi = 2miai.

X =
l∑

i=0

λixi = (1− λ1 − · · · − λl)x0 + λ1x1 + · · ·+ λlxl

= x0 + λ1(x1 − x0) + λ2(x2 − x0) + · · ·+ λl(xl − x0)

=
λ1

2m1

γ∨1 +
λ2

2m2

γ∨2 + · · ·+ λl
2ml

γ∨l + γ̃

π(X)2 = exp(2πi
l∑

i=1

λi
2mi

γ∨i )2 = exp(2πi
l∑

i=1

2aiγ
∨
i ) ∈ Z(G)

if and only if
∑l

i=1 2aiγ
∨
i ∈ P∨ (the weight lattice) if and only if 2ai ∈ Z, for i ≥ 1.

Furthermore, 2a0 ∈ Z because

2ai ∈ Z, ∀i ≥ 1⇒ λi
mi

∈ Z,∀i ≥ 1⇒ λi ∈ Z,∀i ≥ i⇒ λ0 = 1−
l∑

i=1

λi ∈ Z

⇒ a0 = 0 or
1

2
⇒ 2a0 ∈ Z

The lemma follows.

Theorem A.5.3. The real forms in the inner class of θ are parametrized by a node

with label mi = 1 in the extended Dynkin diagram with α0 of ∆(K,T), the points in

E are of the form

xi =


γ̃ i = 0

γ∨i
2

+ γ̃ i 6= 0

the real forms are:

x = π(xi) =


γ i = 0

exp(πiγ∨i )γ i 6= 0
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modulo the action of W̃γ/Waff .

Proof. By the previous lemma, strong real forms are parametrized by

{(a0, · · · , al)|ai ≥ 0, 2ai ∈ Z,
l∑

i=0

miai =
1

2
}

Since mi ≥ 1 and mi ∈ Z, the only possible value for mi to take so that the condition

holds is when mi = 1, ai = 1
2

and aj = 0,∀j 6= i. Therefore λi = 1, λj = 0,∀j 6= i.

x =
l∑

i=0

λixi = xi

In order to make it more convenient for calculation, we want to express strong

real forms in term of information from ∆(G,Hf ).

Let {ξ1, · · · , ξn} be the set of simple roots in ∆(G,Hf ), such that after ar-

ranging them we have {ξ1|T, · · · , ξl|T} as the set of simple roots in ∆(K,T). Let

{γ∨1 , · · · , γ∨l } be the fundamental coweights of G with respect to Hf .

Claim 2.

η∨i =


γ∨i + γ(γ∨i ) γ(γ∨i ) 6= γ∨i

γ∨i γ(γ∨i ) = γ∨i

are the fundamental coweights of K with respect to T.

Proof. Let αi = ξi|T, i ≤ l.

αi(η
∨
j ) =


ξi|T (γ∨j + γ(γ∨j )) = ξi(γ

∨
j + γ(γ∨j )) γ(γ∨j ) 6= γ∨j

ξi|T (γ∨j ) = ξi(γ
∨
j ) γ(γ∨j ) = γ∨j
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We know that γ acts on the set of simple roots {ξi}, therefore it acts on the set of

fundamental coweights {γ∨i }. Moreover, if γ doesn’t fix ξi, i ≤ l, then it sends it to

ξj, j ≥ l. So if j 6= i and γ(γ∨j ) 6= γ∨j then γ(γ∨j ) = γ∨k with k ≥ l and k 6= i. Simple

reasonings like this would show that

αi(η
∨
j ) = δij

therefore completing the proof.

Theorem A.5.3 in terms of the root information of G is:

Theorem A.5.4. The real forms in the inner class of γ are parametrized by a node

with label mi = 1 in the extended Dynkin diagram with α0 being the highest short

root of ∆(K,T), the real forms are:

x = π(xi) =



γ i = 0

exp(πi(γ∨i + γ(γ∨i )))γ i 6= 0, γ(γ∨i ) 6= γ∨i

exp(πiγ∨i )γ i 6= 0, γ(γ∨i ) = γ∨i

modulo the action of W̃γ/Waff .

The following is a list of real forms, Dynkin diagram of G with respect to Hf

and extended dynkin diagram of K with respect to T. The symbol  means fold

the diagram according the the non-trivial diagram automorphism indicated by the

arrows.
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A2n−1

ξ1 ξ2 ξ3 ξn−1 ξn ξn+1 ξ2n−3 ξ2n−2 ξ2n−1

 

Cn

α0

α1 α2 α3 αn−1 αn

1

1 2 2 2 1
<

x =



γ pick α0, represent sln(H)

exp(πi(γ∨1 + γ∨2n−1))γ pick α1, represent sln(H)

exp(πiγ∨n )γ pick αn, represent sl2n(R)

Dn

ξ1 ξ2 ξ3 ξp ξn−3 ξn−2

ξn−1

ξn 

Bn−1

α0 α1 α2 α3 αp αn−3 αn−2 αn−1

><
1 1 1 1 1 1 1 1

x =



γ pick α0, represent so1,2n−1

exp(πiγ∨p )γ pick αp, 1 ≤ p ≤ n− 1, represent so2p+1,2(l−p)−1

exp(πi(γ∨n−1 + γ∨n ))γ pick αn−1, represent so2n−1,1
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E6

ξ1 ξ3 ξ4 ξ5 ξ6

ξ2

 

F4

<
α1 α3 α4 α2α0

2 3 2 11

x =


γ pick α0, represent the split real form

exp(πiγ∨2 )γ pick α2, represent E6(F4)

Appendix B: Correction of Table in [1]

There is no known list of errata for the book “Lie Groups and Algebraic

Groups” by Onishchik and Vinberg [1]. This appendix is a correction to the table

of indicators on page 292 of this book. We will give the correction of the table,

followed by detailed calculation of relevant indicators. Also, the formula on page

291 of [1] is a special case of Theorem 4.4.2.

81



g δ(ρ(Λ))

suk,2p−k (−1)(k+1)pΛp−1

u∗l (H) (−1)Λ1+Λ3+···+Λ2bl/2c−1

slp(H) (−1)Λ1+Λ3+···+Λ2p−1

so2k−1,2(l−k)+1 (−1)((k+1)+(l−1)(l−2)/2)(Λl−1+Λl)

so2k,2(l−k)+1 (−1)(k+l(l−1)/2)Λl

so2k,2(2p−k) (−1)(k+p)(Λ2p−1+Λ2p)

spk,l−k (−1)Λ1+Λ3+···+Λ2b(l+1)/2c−1

EVI (−1)Λ1+Λ3+Λ7

Table 1: Original Table
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g δ(ρ(Λ))

suk,2p−k

(p ≥ 2, 1 ≤ k ≤ p)

(−1)(p2+k)Λp

u∗l (H) (l ≥ 4) (−1)Λ1+Λ3+···+Λ2bl/2c−1

slp(H) (p ≥ 3) (−1)Λ1+Λ3+···+Λ2p−1

so2k−1,2(l−k)+1

(l ≥ 2, 1 ≤ k ≤ bl/2c)

(−1)(k+l(l−1)/2)(Λl−1+Λl)

so2k,2(l−k)+1

(l ≥ 3, 2 ≤ k ≤ l)

(−1)(k+l(l+1)/2)Λl

so2k,2(2p−k)

(p ≥ 2, 2 ≤ k ≤ p)

(−1)(k+p)(Λ2p−1+Λ2p)

spk,l−k

(l ≥ 2, 1 ≤ k ≤ bl/2c)

(−1)Λ1+Λ3+···+Λ2b(l+1)/2c−1

EVI (−1)Λ1+Λ3+Λ7

Table 2: Corrected Table

Bold font marks the corrections. Some bounds on the index of the real forms

are also added to the table, for without them there are apparent contradictions.

For example the indicators of the same representations of so3,5 and so5,3 would be

different.

The notation g here denotes a real form of a simple complex Lie algebra. ρ(Λ)

is an irreducible complex representation of g with highest weight Λ such that ρ ∼= ρ.

A well known fact is that Λ can be written as a linear combination of fundamental
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representations with coefficient of the ith fundamental representation Λi.

Now we give the detailed calculation for the corrected terms and an unequal

rank case. They serve as a sample, if the reader wants to verify the rest, the same

method applies.

B.1 suk,2p−k

We will list some structural facts about this Lie algebra and then apply the

formula in Theorem 4.4.2 or Theorem 4.5.5 to compute the δ-indicator.

• Complexification: sl2p(C)

• Type: A2p−1

• Kac diagram:

ξ0

ξ1 ξ2 ξ3 ξk−1 ξk ξk+1 ξ2p−3 ξ2p−2 ξ2p−1

(p ≥ 2, 1 ≤ k ≤ p)

• Type of maximal compact: Ak−1 ⊕ A2p−1−k ⊕ C

• suk,2p−k is equal rank

• Conjugate of fundamental representations: ρi = ρ2p−i

• Self-conjugate fundamental representations: ρp
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• Strong real form: x = exp(πiγ∨k )

• Fundamental weights:

γk = γ∨k = (ε1 + · · · εk)−
k

2p

2p∑
j=1

εj

• Half sum of positive co-roots:

2ρ∨ = (2p− 1)ε1 + (2p− 3)ε2 + (2p− 5)ε3 + · · · − (2p− 3)ε2p−1 − (2p− 1)ε2p

• Compute δ(ρp):

δ(ρp) = χρp(x
2)ε(ρp) = (−1)γp·(2γ

∨
k +2ρ∨)

γp · 2γ∨k = (ε1 + · · · εp −
1

2

2p∑
j=1

εj) · 2(ε1 + · · ·+ εk −
k

2p

2p∑
j=1

εj)

= 2k − k − k +
k

2p
· 2p = k

γp · 2ρ∨ = (ε1 + · · · εp −
1

2

2p∑
j=1

εj) · ((2p− 1)ε1 + · · · − (2p− 1)ε2p)

= p(2p− 1)− 2

p−1∑
j=1

j − 1

2
(2p)(2p− 1) +

2p−1∑
j=1

j

= p(2p− 1)− p(p− 1) = p2

(4)

δ(ρp) = (−1)k+p2

• Conclusion: δ(ρ(Λ)) = (−1)(k+p2)Λp
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B.2 so2k−1,2(l−k)+1

• Complexification: so2l(C)

• Type: Dl

• Kac diagram

α0 α1 α2 α3 αk−1 αn−3 αn−2 αn−1

><
1 1 1 1 1 1 1 1

(l ≥ 3, 0 ≤ k ≤ b l − 1

2
c)

• Type of maximal compact: Bk−1 ⊕Bl−k

• so2k−1,2(l−k)+1 is NOT equal rank

• Conjugates of fundamental representations: ρi = ρi for 1 ≤ i ≤ l − 2 and

ρl−1 = ρl if l ≡ 0(2), ρl−1 and ρl are self-conjugate if l ≡ 1(2)

• Dual of fundamental representations: ρ∨i = ρi for 1 ≤ i ≤ l − 2 and ρ∨l−1 = ρl

if l ≡ 1(2), ρl−1 and ρl are self-dual if l ≡ 0(2).

• Self-conjugate fundamental representations: ρi for 1 ≤ i ≤ l − 2, ρl−1 and ρl

if l ≡ 1(2)

• Hermitian fundamental representations: ρi for 1 ≤ i ≤ l − 2

• Formulas for the δ-indicators:
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For Hermitian representation ρi:

δ(ρi) = (−1)γi(2γ
∨
k +2ρ∨)

For non-Hermitian representation ρi:

δ(ρi) = χρi(x
2)ε(ρ̃i)

See Theorem 4.5.5. According to [9], ε(ρ̃i) = χρi(C
2), where C is the strong

real form associated to the split real form. We can look up the table in [1] for

the split form. In this case

C = exp(πiγ∨(l−1)/2)δf C2 = exp(2πiγ∨(l−1)/2)

Therefore

δ(ρi) = (−1)γi(2γ
∨
k +2γ∨

(l−1)/2
)

• Strong real form: x = exp(πiγ∨k )δf See Theorem A.5.4

• Fundamental (co)weights:

γk = γ∨k = ε1 + · · · εi 1 ≤ i ≤ l−2 γl−1 = γ∨l−1 =
1

2
(ε1 +ε2 + · · ·+εl−1−εl)

γl = γ∨l =
1

2
(ε1 + ε2 + · · ·+ εl)

• Half sum of positive co-roots:

2ρ∨ = 2(l − 1)ε1 + 2(l − 2)ε2 + · · ·+ 2εl−1

• Compute δ(ρi):
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For 1 ≤ i ≤ l − 2: δ(ρi) = (−1)γi(2γ
∨
k +2ρ∨)

γi(2γ
∨
k ) = 2 min(i, k)

γi(2ρ
∨) = (ε1+· · ·+εi)·(2(l−1)ε1+· · ·+2εl−1) = 2(l−1+· · ·+l−i) = 2li−(i+1)i

δ(ρi) = 1 1 ≤ i ≤ l − 2

For i = l − 1 or i = l and l ≡ 1(2), δ(ρi) = (−1)γi(2γ
∨
k +2γ∨

(l−1)/2
)

γi(2γ
∨
k ) = k

γi(2γ
∨
(l−1)/2) =

1

2
(ε1 + · · · εl−1 − εl) · (2(l − 1)ε1 + · · ·+ 2εl−1)

= l − 1 + l − 2 + · · ·+ 1 =
l(l − 1)

2

δ(ρl−1) = δ(ρl) = (−1)k+
l(l−1)

2

• Conclusion:

δ(ρ(Λ)) = (−1)(k+
l(l−1)

2
)(Λl−1+Λl)

B.3 so2k,2(l−k)+1

• Complexification: so2l+1(C)

• Type: Bl

• Kac diagram:

α0

α1 α2 α3 αk αl−1 αl

1

1 2 2 2 2 1
>

(l ≥ 3, 2 ≤ k ≤ l − 1)
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• Type of maximal compact: Dk ⊕Bl−k

• so2k,2(l−k)+1 is equal rank

• Conjugates of fundamental representations: ρi = ρi

• Self-conjugate fundamental representations: ρi, ∀1 ≤ i ≤ l

• Strong real form: x = exp(πiγ∨k )

• Fundamental co-weights:

γ∨k = ε1 + · · · εk 1 ≤ k ≤ l

• Fundamental weights:

γk = ε1 + · · · εi 1 ≤ i < l γl =
1

2
(ε1 + · · ·+ εl)

• Half sum of positive co-roots:

2ρ∨ = 2lε1 + (2l − 2)ε2 + · · ·+ 4εl−1 + 2εl

• Compute δ(ρi):

δ(ρi) = χρi(x
2)ε(ρi) = (−1)ρi(2γ

∨
k +2ρ∨)

For 1 ≤ i < l

ρi(2γ
∨
k ) = (ε1 + · · · εi) · 2(εi + · · · εk) = 2 min(i, k)

ρi(2ρ
∨) = (ε1 + · · · εi)(2lε1 + 2(l − 1)ε2 + · · ·+ 2εl)

= 2(l + l − 1 + l − 2 + · · · l − (i− 1)) = 2(il − i(i− 1)

2
) = 2il − i2 + i
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δ(ρi) = (−1)2 min(i,k)+2il−i(i−1) = 1

For i = l

ρl(2γ
∨
k ) =

1

2
(ε1 + · · ·+ εl) · 2(ε1 + · · ·+ εk) = k

ρl(2ρ
∨) =

1

2
(ε1 + · · ·+ εl) · (2lε1 + 2(l − 1)ε2 + · · ·+ 2εl)

= l + l − 1 + l − 2 + · · ·+ 1 =
(l + 1)l

2

δ(ρl) = (−1)k+
(l+1)l

2

• Conclusion: δ(ρ(Λ)) = (−1)(k+l(l+1)/2)Λl
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Part II

A Comment on the Local Langlands Correspondence of GL(2, F )
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Chapter 0: Introduction

In this part, we are going to spell out the construction of the local Langlands

correspondence of GL(2, F ). Although this is done in [14] and various other places,

we give a treatment that is easier to understand and only requires comparatively

more elementary tools.

What’s new here is that by looking into the construction from a more elemen-

tary perspective, we are able to provide less complicated proofs for some facts. For

example, in [14], in order to prove the fact that the Langlands correspondence is

independent of ψ (Theorem 3.0.6), they invoked the local constant. Here we prove

it directly from properties of the Weil representation.

Throughout this part, F will denote a non-Archimedean local field with charac-

teristic 0. The Weil group of F will be denotedWF . The local Langlands conjecture

says there exists a unique bijection between the set G2(F ), defined to be:

G2(F ) := {2-dim, semi-simple Deligne representations of the Weil group WF}/ ∼

and the set A2(F ), defined to be:

A2(F ) := {irreducible smooth representations of GL(2, F )}/ ∼

with certain properties:
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Definition 0.0.1. [Local Langlands Conjecture] There is a unique bijection

π : G2(F )→ A2(F )

such that

L(χ(π(ρ)), s) = L(χ⊗ ρ, s) (1)

ε(χ(π(ρ)), s, ψ) = ε(χ⊗ ρ, s, ψ) (2)

for all ρ ∈ G2(F ) and all characters χ of F× and all ψ ∈ F̂ , ψ 6= 1.

Here L(π, s) is the L-function and ε(π, s, ψ) is the local-constant [14], and

χπ = π ⊗ (χ ◦ det)

We have the following decomposition:

G0
2(F ) = {irreducible, 2-dim, semi-simple Deligne representation of WF}

G1
2(F ) = {reducible, 2-dim, semi-simple Deligne representations of WF}

G2(F ) = G0
2(F ) ∪ G1

2(F ).

A0
2(F ) = {irreducible cuspidal smooth representations of GL(2, F )}

A1
2(F ) = {irreducible non-cuspidal smooth representations of GL(2, F )}

A2(F ) = A0
2(F ) ∪A1

2(F ).

Proposition 0.0.1. [14, P213] Any map π satisfying equation (1) and (2) must

take G1
2(F ) to A1

2(F ) and G0
2(F ) to A0

2(F ).
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The map

π1 : G1
2(F )→ A1

2(F )

is clearly presented in [14, P213].

The heart of the matter is therefore to construct map:

π : G0
2(F )→ A0

2(F )

There is more than one way to construct this map. Here, we will be using

the theta correspondence. This construction is given in a more complicated manner

in [14]. Here is a simplified version given by the following diagram:

ρΘ (E/F,Θ) θ

πΘ πΘ,ψ πθ,ψ

local Langlands correspondence

Theorem1.0.1 Θ|E1

theta correspondence

extensioninduction

The process goes clockwise beginning at ρΘ ∈ G0
2(F ).

1. G0
2(F ) 3 ρΘ 7→ (E/F,Θ) ∈ P(F ) (Definition 1.0.3), this map is described in

Theorem 1.0.1.

2. P(F ) 3 (E/F,Θ) 7→ θ := Θ|E1 , here E1 is the norm 1 elements in E and

E1 ∼= SO(2, F ). E is a tamely ramified quadratic field extension of F .

3. ŜO(2, F ) 3 θ 7→ πθ,ψ ∈ ŜL(2, F ). This map is produced by (some modification

of) the theta correspondence. Note that πθ,ψ is dependent on an additive

character ψ.
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4. ŜL(2, F ) 3 πθ,ψ 7→ πΘ ∈ ĜL(2, F ). The representation πΘ is obtained by

extending πθ,ψ and then inducing the extended representation. Note that πΘ

is independent of ψ.

The core of the construction is to use the theta correspondence for the dual

pair (O(2, F ), Sp(2, F )) in Sp(4, F ). This allows us to get a representation πθ,ψ of

Sp(2, F ) ∼= SL(2, F ) from θ. Note that the dual pair correspondence depends on ψ.

Since the Langlands correspondence should not involve ψ, naturally we would

like to prove that the representation πΘ is independent of ψ. Bushnell and Henniart

[14] used the local constant to prove this fact. Here we derive this fact directly from

properties of the Weil representation. In addition, the irreducibility of πΘ is also

naturally built in.

Chapter 1: Admissible Pairs

Most of the content in this section is from [14].

Consider a pair (E/F, χ), where E/F is a tamely ramified quadratic field

extension and χ is a character of E×.

Definition 1.0.1. The pair (E/F, χ) is called admissible if:

1. χ does not factor through the norm map NE/F : E× → F× and,

2. if χ|U1
E does factor through NE/F , then E/F is unramified.
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Here U1
E = 1 + p where p is the maximal ideal of the discrete valuation ring in E.

Definition 1.0.2. [14, P127] Admissible pairs (E/F, χ), (E ′/F, χ′) are said to be

F -isomorphic if there is an F -isomorphism j : E → E ′ such that χ = χ′ ◦ j. In the

case E = E ′, this amounts to χ′ = χσ, σ ∈ Gal(E/F ).

Definition 1.0.3. Define P(F ) to be the F -isomorphism classes of admissible pairs

(E/F, χ).

Theorem 1.0.1. [14] There is a bijection P(F )↔ G0
2(F ).

Here’s how the map is constructed.

If (E/F, χ) is an admissible pair, then χ can be viewed as a character of the

Weil group WE by composing with the Artin map: aE : W(E) → E×. We know

that W(E) is an index two subgroup in W(F ), we can induce χ:

ρχ = Ind
W(F )
W(E)χ

This induced representation is irreducible by Clifford theory, since χ not factoring

through NE/F is equivalent to the fact that χ 6= χσ, and the Artin map is Gal(E/F )-

equivalent.

The proof of the bijectivity of this map is given in [14].

Remark 17. The admissible pairs P(F ) also parametrize A0
2(F ), and it can therefore

give a bijection between G0
2(F ) and A0

2(F ), but it is well known that this map does

not satisfy equation (1) and (2).

There are various ways to define the correct correspondence. [14] does this

in Chapter 9. But it is not the optimal perspective in terms of understanding
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the construction. We will explain the construction in a more understandable way.

Starting in the next section, we will introduce the basics of the theory of theta

correspondence.

Chapter 2: The Theta Correspondence

We are going to explain the theory of theta correspondence in the generality

that suits the purpose of this thesis. First of all, we define a basic ingredient of the

theta correspondence: a reductive dual pair (G,G′) in Sp(W ). Then we will present

the Schrödinger Model of the Weil representation of the Metaplectic group Mp(W ).

The restriction of the Weil representation to the direct product of the lifts G̃ × G̃′

gives the theta correspondence between representations of G̃ and G̃′. We apply this

to Õ(E)× S̃p(2, F ).

Most of the material and detailed proofs in this section can be found in [15], [16]

and [17].

2.1 Reductive Dual Pair

Definition 2.1.1. A Reductive dual pair is a pair of subgroups (G,G′) in the sym-

plectic group Sp(W ) such that:

1. G is the centralizer of G′ in Sp(W ), and G′ is the centralizer of G in Sp(W ).

2. the actions of G and G′ are completely reducible on W , i.e., any G-invariant
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subspace of W has a G-invariant complement; similarly for G′.

What we will be using is a specific kind of dual pair. Let V and W be finite

dimensional vector spaces over F ; V is equipped with a non-degenerate symmetric

bilinear form (, ); and W is equipped with a non-degenerate skew-symmetric bilinear

form 〈, 〉. Necessarily dim(W ) has to be even.

Define W = V ⊗W with symplectic form 〈〈, 〉〉 = (, ) ⊗ 〈, 〉. This makes the

pair (O(V ), Sp(W )) a reductive dual pair in Sp(W).

2.2 Weil Representation and the Schrödinger Model

Throughout this section W is a symplectic vector space with non-degenerate

symplectic bilinear form 〈, 〉 represented by

 0 I

−I 0

. Fix X and Y two transversal

Lagrangian subspaces of W .

Definition 2.2.1. The Heisenberg group H(W ) is a non-trivial extension of W by

F . It is defined to be the group of pairs

{(w, t) | w ∈ W, t ∈ F}

with multiplication law:

(w1, t1) · (w2, t2) = (w1 + w2, t1 + t2 +
1

2
〈w1, w2〉)

Thus H(W ) fits in the exact sequence

0→ Z → H(W )→ W → 0

where Z = {(0, t) | t ∈ F} ∼= F is the center of H(W ).
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The irreducible unitary representations of H(W ) are classified by their central

characters.

Theorem 2.2.1 (Stone-von Neumann). The Heisenberg group H(W ) has a unique

(up to unitary equivalence) irreducible unitary representation ρψ with central char-

acter ψ.

The proof is given in [18].

These representations can be realized on the Schwartz space S =S(X), the

space of locally constant compactly supported complex valued functions on X. We

will now give a construction of (ρψ,S). Here we follow [15] very closely.

Let H(Y ) ∼= Y ⊕Z be the abelian subgroup of the Heisenberg group associated

to Y in W . Thus H(Y ) is a maximal abelian subgroup of H(W ). The character ψ

of Z has a unique extension ψY to H(Y ), given by ψY (y, t) = ψ(t). Let

SY = Ind
H(W )
H(Y ) ψY

be the representation of H(W ) obtained from the character ψY by smooth induction.

By definition:

SY = {f : H(W )→ C | f(h1h) = ψY (h1) · f(h),∀h1 ∈ H(Y ), h ∈ H(W )

and there is an open subgroup L ⊂ W such that f(h(u, 0)) = f(h) for all u ∈ L}.

Then H(W ) acts on SY by right translation, in particular, Z acts by the following:

(0, t) · f(h) = f(h · (0, t)) = f((0, t) · h) = ψY ((0, t))f(h) = ψ(t)f(h)

Thus the central character is ψ. Denote this action of H(W ) on SY as ρψ.
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Since W = X + Y is a complete polarization of W , we have the following

isomorphism:

SY ∼= S

given by f 7→ ϕ, ϕ(x) = f((x, 0)).

Lemma 2.2.2. The resulting action of H(W ) on S is given by:

ρψ((x+ y, t)) · ϕ(x0) = ψ(t+ 〈x0, y〉+
1

2
〈x, y〉) · ϕ(x0 + x)

Now, we will explain how the representations of H(W ) give rise to a projective

representation of Sp(W ) = {g ∈ GL(W ) | 〈w1g, w2g〉 = 〈w1, w2〉}.

The group Sp(W ) acts on H(W ) naturally:

g · (w, t) = (wg, t), g ∈ Sp(W )

therefore acts on the representation ρψ:

g · ρψ = ρgψ, where ρgψ((w, t)) = ρψ(g · (w, t)) = ρψ(wg, t)

It is easy to check that ρgψ still has central character ψ. By Theorem 2.2.1, we know

ρψ ∼= ρgψ, therefore g gives rise to T (g) : S → S such that the following diagram

commutes:

S S

S S

T (g)

ρψ ρgψ

T (g)

The intertwining operator T (g) is unique up to scalar in C×, so the map

g 7→ T (g)
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defines a projective representation of Sp(W ) on S, i.e., a homomorphism

Sp(W )→ GL(S)/C×

We also present a realization of this projective representation based on the previous

realization of ρψ on S.

Consider W with the complete polarization we have fixed in the beginning of

this section: W = X + Y ; we can write g ∈ Sp(W ) as

g =

A B

C D


where A ∈ End(A), B ∈ Hom(X, Y ), C ∈ Hom(Y,X) and D ∈ End(Y ).

Definition 2.2.2. [15] The standard Segal-Shale-Weil representation ωψ of Sp(W )

is realized on S:

(ωψ(g) · ϕ)(x)

=

∫
kerC\Y

ψ

(
1

2
〈xA+ yC, xB〉+

1

2
〈yC, xB + yD〉

)
ϕ(xA+ yC) dµg(y)

dµg(y) is the unique Haar measure on (Y g−1∩Y )\Y , hence on (kerC)\Y , such that

ωψ(g) preserves the L2 norm on S.

Remark 18. Note that this construction depends on the character ψ of F and the

symplectic basis we chose. For detailed calculations, see [19] and [15].

This realization determines a cocycle, i.e., a map c : Sp(W )× Sp(W )→ C∗:

ωψ(g1g2) = c(g1, g2)ωψ(g1)ωψ(g2)

satisfying the cocycle condition:

c(g1, g2)c(g1g2, g3) = c(g1, g2g3)c(g2, g3)
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Theorem 2.2.3. The cocycle c can be explicitly calculated and normalized such

that it is ±1 valued. More specifically, we can find normalizing constant m(g) such

that the cocycle c̃ associated to the projective representation ω′ψ := m(g)ωψ(g) is ±1

valued.

Remark 19. In order to avoid putting heavy notations in this section, we will present

explicit formulas for m(g) and the normalized cocycle in the Appendix.

Definition 2.2.3 (Weil representation). The projective representation gives rise to

an ordinary representation of the two-fold covering space of Sp(W ); it is called the

Weil representation.

Definition 2.2.4 (Schrödinger Model).

Mp(W ) = {(g, ε) | g ∈ Sp(W ), ε = ±1}

with group multiplication

(g1, ε) · (g2, δ) = (g1g2, εδc̃(g1, g2))

is the Metaplectic group and the representation of Mp(W ) on S

ω̃ψ(g, ε) = ε ω′ψ

is called the Schrödinger model of the Weil representation.

One property of the Weil representation we obtain from construction is the

following:

Corollary 2.2.4. [17, 1.11]

ω̃ψt
∼= ω̃ψs ⇔ st ∈ (F×)2
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2.3 Theta Correspondence

The foundation of the theory is due to Howe.

We will start with a brief introduction to the general theory, then specialize

to the case we are interested in. Here we follow [15] closely.

Let (G,G′) be a dual pair in Sp(W ), G̃ and G̃′ be the inverse images of G and

G′ in Mp(W ).

Lemma 2.3.1. [18, Lemma 2.5] If two elements in Sp(W ) commute then their

arbitrary lifts in Mp(W ) also commute.

Therefore, we have a natural homomorphism:

j : G̃× G̃′ →Mp(W )

hence we can consider the pull back of the Weil representation to G̃ × G̃′, namely

ω̃ψ ◦ j; by abuse of notation we denote this representation ω̃ψ.

The basic idea of the theta correspondence is that the Weil representation of

Mp(W ) is very “small”; its restriction to G̃× G̃′ should decompose into irreducibles

in a reasonable way.

Suppose π is an irreducible admissible representation of G̃. Let S(π) be the

maximal quotient of S on which G̃ acts as a multiple of π. By [18, Chapter 2], there

is a smooth representation Θψ(π) of G̃′ such that

S(π) ∼= π ⊗Θψ(π)

and Θψ(π) is unique up to isomorphism.
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Theorem 2.3.2 (Howe Duality Principle). For any irreducible admissible represen-

tation π of G̃

1. Either Θψ(π) = 0 or Θψ(π) is an admissible representation of G̃′ of finite

length.

2. If Θψ(π) 6= 0, there is a unique G̃′ invariant submodule Θ0
ψ(π) such that the

quotient

θψ(π) := Θψ(π)/Θ0
ψ(π)

is irreducible.

3. If θψ(π1) and θψ(π2) are nonzero and isomorphic, then π1
∼= π2.

Definition 2.3.1 (Theta Correspondence). Let

Howeψ(G̃, G̃′) = {π ∈ Irr(G̃) | θψ(π) 6= 0}

be the set of (up to isomorphism) irreducible admissible representations of G̃. The

map:

π 7→ θψ(π)

defines a bijection:

Howeψ(G̃, G̃′)
∼−→ Howeψ(G̃′, G̃)

this bijection is referred to as the local theta correspondence.

We now specialize to the case we are interested in:

Let E = F (δ) be a tamely ramified quadratic field extension of F , δ =

√
∆, ∆ ∈ F×/(F×)2. The field E can be viewed as a 2-dimensional vector space
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over F with symmetric bilinear form induced by the norm map:

N(α1 + α2δ) = α2
1 −∆α2

2

with the basis: {1, δ}, the form is represented by

1 0

0 −∆

 .

Let W be a 2-dimensional symplectic vector space over F with basis w1, w2

and skew-symmetric form (after choosing basis) represented by

 0 1

−1 0

.

Consider W = W ⊗ V with basis {x1 := w1 ⊗ 1, x2 := w1 ⊗ − 1
∆
δ, y1 :=

w2 ⊗ 1, y2 := w2 ⊗ δ}; the skew-symmetric bilinear form is represented by

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


.

Let E1 = {α ∈ E | N(α) = 1}. E1 acts on E by multiplication on the left;

it’s easy to check that E1 ∼= SO(E) by map:

α1 + α2δ 7→

 α1 α2

α2∆ α1


and note that Sp(2) ∼= SL(2, F ). By the theta correspondence and the Schrödinger

model of Weil representation, we have the following result:

Theorem 2.3.3. Suppose θ is a regular character of E1. The corresponding irre-

ducible representation πθ,ψ of SL(2, F ) on the space S(E)θ = {ϕ ∈ S(E) | ϕ(α ·µ) =
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θ(µ)ϕ(α), ∀µ ∈ E1, ∀α ∈ E} is described as follows:

πθ,ψ

a 0

0 a−1

 · ϕ(α) = (a,∆) · |a| · ϕ(aα)

πθ,ψ

1 b

0 1

 · ϕ(α) = ψ(b ·N(α)) · ϕ(α)

πθ,ψ

 0 1

−1 0

 · ϕ(α) = γ(∆, ψ)ϕ̂(α)

where ϕ̂ =
∫
E
ψE(zασ)ϕ(z) dz is the σ-twisted Fourier transform. See the Appendix

for definitions of γ and (a,∆).

Proof. It is well known that the Metaplectic cover Mp(4) splits over SO(2). It also

splits over SL(2, F ) because the orthogonal vector space V has even dimension.

Let’s first describe the explicit embedding of SO(2) ∼= E1 in Õ(E) and SL(2, F ) in

S̃L(2, F ). Define:

ι : O(E)× Sp(2)→ Sp(4)

t u

r s

×
a b

c d

 7→



at −∆au bt bu

−ar
∆

as − br
∆
− bs

∆

ct −∆cu dt du

cr −∆cs dr ds


For the convenience of future reference, we also write down the embeddings:

ι : O(E)× 1→ Sp(4)
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t u

r s

×
1 0

0 1

 7→



t −∆u 0 0

− r
∆

s 0 0

0 0 t u

0 0 r s



ι : 1× Sp(2)→ Sp(4)

1 0

0 1

×
a b

c d

 7→



a 0 b 0

0 a 0 − b
∆

c 0 d 0

0 −∆c 0 d


The embedding E1 ↪→ Õ(E) is:

α1 + α2δ 7→

 α1 α2

α2∆ α1

 7→
ι(

 α1 α2

α2∆ α1

), 1


It is a straightforward calculation that this is a group homomorphism given the

formulas in [19].

To obtain the embedding SL(2, F ) ↪→ S̃L(2, F ), we look at [20]:

c(ι(g1), ι(g2)) = βV (g1g2)βV (g1)−1βV (g2)−1

where

βV (g) = γ(x(g),
1

2
ψ))−m(x(g), det(V ))γ(

1

2
ψ ◦ V )−j

m = dimV , g is in the j-th cell PτjP .

The embedding s : SL(2, F ) ↪→ S̃L(2, F ) is defined as follows:

s(g) = (ι(g),m(ι(g))−1βV (g))
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It is easily verified that this is a group homomorphism. One important thing to

verify is that m(ι(g))−1βV (g) takes ±1 value. Further calculation shows:

s :

a b

0 a−1

 7→
ι(

a b

0 a−1

), (a,∆)



s :

 0 1

−1 0

 7→
ι(

 0 1

−1 0

), (−1,∆)


generate this embedding.

It is an elementary consequence of the theory of the theta correspondence that

the restriction ω̃ψ to SO(2)× SL(2, F ) can be written as direct sum:

∑
i

θi � πi

where θi is a character of SO(2), and πi is an irreducible representation of SL(2, F ).

Let’s first determine the irreducible subspace on which SO(2) acts with the

character θ, i.e., the θ-isotypic:

S(E)θ = {ϕ ∈ S(E) | ϕ(α · µ) = θ(µ)ϕ(α), ∀µ ∈ E1, ∀α ∈ E}

The way SL(2, F ) acts on S(E)θ is completely determined by the embedding s and

the Weil representation ω̃ψ:

πθ,ψ

a b

c d

 · ϕ(α) = ω̃ψ

s(
a b

c d

)


Formulas for the Schrödinger model of ω̃ψ is given in the Appendix. The Theorem

then follows by simple calculation.
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Remark 20. Notice that this correspondence is 2-to-1, because θ and θσ both cor-

responds to isomorphic SL(2, F ) representations. Fortunately, this won’t get in the

way of constructing the Langlands correspondence, since later we will be using the

full information of Θ to construct a representation of GL(2, F ). Θ and Θσ will

correspond to different representations of GL(2, F ).

Chapter 3: The Langlands Correspondence

Let (E/F,Θ) be an admissible pair. We have constructed an irreducible rep-

resentation πθ,ψ of SL(2, F ); now we would like to inflate this representation to a

representation of GL(2, F ) by inflating step by step through the following inclusions:

SL(2, F ) ⊂ GL(2, F )◦ ⊂ GL(2, F )N ⊂ GL(2, F ).

Definition 3.0.1. Define

GL(2, F )◦ = SL(2, F )Z

where

Z =


x 0

0 x

 | x ∈ F×
 .

In other words, GL(2, F )◦ = {g ∈ GL(2, F ) | det(g) ∈ (F×)2}

To extend πθ,ψ, we need to know a little more about the Langlands correspon-

dence.
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Proposition 3.0.1. [14, Proposition 33.4] If π is the Langlands correspondence

in Definition 0.0.1, then for ρ ∈ G0
2(F ) and π = π(ρ), χπ = det ρ. Here χπ is the

central character of π.

Lemma 3.0.2.

det ρΘ = κ⊗Θ|F

where κ(x) = (x,∆), ρΘ = IndWF
WE

Θ

These conditions impose some constraint on how we may extend the represen-

tation to GL(2, F )◦. We are required to define:

Definition 3.0.2.

π(Θ, ψ)◦

x 0

0 x

 · ϕ(α) = κ(x)Θ(x)ϕ(α)

is an irreducible representation of GL(2, F )◦ on S(E)θ.

Next we pass from GL(2, F )◦ to GL(2, F )N .

Definition 3.0.3.

GL(2, F )N = {g ∈ GL(2, F ) | det(g) ∈ N(E×)}

GL(2, F )N is generated by the group GL(2, F )◦ and N(E×) ∼= {

γ 0

0 1

 |

γ ∈ N(E×)}. Let’s extend the representation to

γ 0

0 1

. Let πΘ,ψ denote the
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representation of GL(2, F )N extended from π(Θ, ψ)◦. For consistency, πΘ,ψ has to

satisfy:

πΘ,ψ

γ 0

0 1

 ·
γ 0

0 1

 · ϕ(α) = π(Θ, ψ)◦

γ2 0

0 1

 · ϕ(α)

= Θ(ζ2) · |γ| · ϕ(σ(ζ2)α)

Here ζ ∈ E is defined by N(ζ) = γ.

Definition 3.0.4.

πΘ,ψ

γ 0

0 1

 · ϕ(α) = Θ(ζ) · |γ|
1
2 · ϕ(σ(ζ)α), ∀γ ∈ N(E×)

πΘ,ψ

x 0

0 x

 · ϕ(α) = (x,∆)Θ(x)ϕ(α), ∀x ∈ F×

together with the action of SL(2, F ) via πθ,ψ defines a representation of GL(2, F )N .

Remark 21. This extension is independent of the choice of ζ since if we choose

another element with norm α, it is going to be of the form ζµ, µ ∈ E1.

Θ(ζµ)|γ|
1
2ϕ(σ(ζ)σ(µ)α) = Θ(ζ)θ(µ)|γ|

1
2 θ(σ(µ))ϕ(σ(ζ)α)

= Θ(ζ)θ(N(µ))|γ|
1
2ϕ(σ(ζ)α) = Θ(ζ)|γ|

1
2ϕ(σ(ζ)α)

Finally, we would like to obtain an irreducible representation of GL(2, F ) from

πΘ,ψ. Since GL(2, F )N is an index 2 subgroup of GL(2, F ), we would like to induce

πΘ,ψ. Note that the non-trivial coset of GL(2, F )N in GL(2, F ) is represented by

matrix

η 0

0 1

, where η ∈ F×\N(E×).
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Lemma 3.0.3. For t ∈ F×, πtθ,ψ
∼= πθ,ψt.

Here πtθ,ψ is defined as

πtθ,ψ(A) = πθ,ψ(TAT−1)

where T =

t 0

0 1

 and ψt(α) = ψ(tα). This lemma is easy to prove from the

formulas.

Lemma 3.0.4.

πθ,ψ is


∼= πθ,ψt t ∈ N(E×)

� πθ,ψt t /∈ N(E×)

The fact πθ,ψ ∼= πθ,ψt when t ∈ N(E×) is easy to prove from the formulas

by writing down an explicit intertwining operator, while the second part can be

observed from the difference in their character formulas. Such character formulas

are presented in [21].

Proposition 3.0.5.

πΘ,ψ is


∼= πΘ,ψt t ∈ N(E×)

� πΘ,ψt t /∈ N(E×)

This is an elementary consequence of the previous lemmas.

Definition 3.0.5.

πΘ = Ind
GL(2,F )
GL(2,F )N

πΘ,ψ

Theorem 3.0.6. πΘ is irreducible and independent of ψ.
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Proof. GL(2, F )N is an index 2 subgroup in GL(2, F ). By Clifford theory, the

induced representation πΘ is irreducible if and only if πηΘ,ψ is not isomorphic to

πΘ,ψ. η is not in N(E×) by definition, therefore Proposition 3.0.5 implies πΘ is

irreducible.

To prove the independence of ψ, we only need to consider Ind
GL(2,F )
GL(2,F )N

πΘ,ψ and

Ind
GL(2,F )
GL(2,F )N

πΘ,ψη . Note the representation Ind
GL(2,F )
GL(2,F )N

πΘ,ψ restricted to GL(2, F )N

decomposes into πΘ,ψ ⊕ πηΘ,ψ. By Frobenius reciprocity we have:

Ind
GL(2,F )
GL(2,F )N

πΘ,ψ
∼= Ind

GL(2,F )
GL(2,F )N

πΘ,ψη

hence the independence of ψ.

Now we have paved most of our way towards the Langlands correspondence.

We will state a partial correspondence theorem.

Definition 3.0.6. Let ρ ∈ G0
2(F ); one say that ρ is imprimitive if there exists a

separable quadratic extension E/F and a character ξ of E× such that ρ ∼= IndE/F ξ.

Let Gim2 (F ) denote the set of imprimitive equivalence classes ρ ∈ G0
2(F ).

Theorem 3.0.7. [14, 40.1]

ρΘ 7→ (E/F,Θ) 7→ πΘ

is a bijection Gim2 (F )↔ A0
2(F ) and it satisfies Equation 2 and Equation 1.

The proof of this theorem can be found in [14] section 39. One only need to

make the observation that πΘ,ψ
∼= ξκ(Θ, ψ), the latter notation is from [14]. The

intertwining operator is presented in [14, 39.2].
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Remark 22. When the residual characteristic of F is odd, we have Gim2 (F ) = G0
2(F ).

If p = 2, we have Gim2 (F ) ( G0
2(F ), in which case the theorem only provides a partial

correspondence.

Appendix C: Formulas for Cocycles

In this section, W is a symplectic vector space with skew-symmetric bilinear

form 〈, 〉, X and Y are two transversal Lagrangian subspaces of W . Sp(W ) has

Bruhat decomposition Sp(W ) = PΩP where P is the stablizer of Y , Ω is the Weyl

group.

Theorem 3.0.8. [19, Theorem4.1]

c(g1, g2) = Weil index of w 7→ ψ(
1

2
〈w,w · ρ〉)

where the isometry class of ρ is given by the Leray invariant q(Y, Y g−1
2 , Y g1)

Lemma 3.0.9. [19, Lemma5.1] There exists unique map f : Sp(W )→ F×/(F×)2

such that the following holds:

(i) f(p1gp2) = f(p1)f(g)f(g2) ∀p1, p2 ∈ P

(ii) f(τS) = 1 for all subsets S ⊂ {1, 2, · · · , n}

(iii) f(p) = det(p|Y )(F×)2 ∀p ∈ P
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Moreover, such a function is uniquely defined by

f(p1τSp2) = det(p1p2|Y )(F×)2

See [19, P345] for the definition of τS.

Definition 3.0.7. Define the normalizing constant

m(g) = γF (f(g),
1

2
ψ)−1

(
γF (

1

2
ψ)

)−j
for g ∈ ΩjPτSP with j = |S|, γF (1

2
ψ) is the Weil index of α 7→ 1

2
ψ(α2), γF (a, ψ) =

γF (ψa)/γF (ψ).

Theorem 3.0.10. [19, P364] If dimW = 2, then

c̃(g1g2) = (f(g1), f(g2))(−f(g1)f(g2), f(g1g2))

f :

a b

c d

 7→

d(F×)2 c = 0

c(F×)2 c 6= 0

Theorem 3.0.11. Here are the explicit formulas for the Weil representation ω̃ψ of
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Mp(4):

ω̃ψ


A 0

0 tA−1

 , ε
 · ϕ(α) = ε ·

γ(1
2
ψ)

γ(detA · 1
2
ψ)
|detA|

1
2ϕ(α · A)

ω̃ψ


I B

0 I

 , ε
 · ϕ(x) = ε · ψ

(
1

2
〈x, x ·B〉

)
ϕ(x)

ω̃ψ
(
τ{1}, ε

)
· ϕ(x) = ε · γ(

1

2
ψ)−1

∫
Y/Y2

ψ(−b1α1)ϕ(−b1x1 + α2x2)dµg(b1)

ω̃ψ
(
τ{2}, ε

)
· ϕ(x) = ε · γ(

1

2
ψ)−1

∫
Y/Y1

ψ(−b2α2)ϕ(α1x1 − b2x2)dµg(b2)

ω̃ψ
(
τ{1,2}, ε

)
· ϕ(x) = ε · γ(

1

2
ψ)−2

∫
Y

ψ(〈α, y〉)ϕ(y)dµg(y)

µp{0} = |det p|Y |−1/2

Yi = spanC{yi}, y ∈ Y is represented by coordinates (b1, b2) with basis {y1, y2}.

α ∈ E is represented by coordinates (α1, α2) with basis {1,− 1
∆
δ}
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