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1 Tamagawa Number

Definition 1 (Tamagawa Number). [1, P262] The invariant volume of GA/GK
(if it exists) obtained with respect to the canonical choice of Tamagawa measure
is called the Tamagawa number of G, denoted τ(G).

Remark 1. For G semi-simple, GA/GK has finite invariant volume because the
fact that G is a perfect group, i.e. G = [G,G], therefore the rational character
group of G is trivial, and [1, P260 Theorem 5.5]

Remark 2. It looks like from the definition τ(G) depends on the number field
K, so it should be τK(G). If L is a finite extension of K, we have τL(G) =
τK(RL/K(G)). Weil showed that in fact the Tamagawa number is independent
of Weil restriction, i.e., τL(G) = τK(RL/K(G)) = τK(G). This is proved with
details in the paper by Oesterlé ”Nombres de Tamagawa et groupes unipotentes
en caractéristique p”. This allow us to reduce to the case K = Q.

Definition 2 (Tamagawa Measure). [1, P261] Assume G is connected. The
Haar measure on GA can be constructed using a left invariant rational differen-
tial K-form ω on G of degree n = dimG. More precisely, ω induces a left invari-
ant measure ων on GKν for each ν ∈ V K as in Example3. Let’s choose numbers
λν for ν ∈ V Kf (called convergence coefficients) such that

∏
ν λνων(GOν ) con-

verges absolutely (for example we can set λν to be 1
ων(GOν ) )

Treating GA as the restricted topological product of the GKν with respect
to the distinguished subgroups GOν , we can use the construction in Section 2 to
obtain a Haar measure τ on GA, called the Tamagawa measure corresponding
to the set of convergence coefficiens λ = (λν).

Remark 3. [1, P262] It is well kown that the convergence coefficients used in
the definition of Tamagawa measure can be chosen canonically; in particular,
for G semisimple they are not even necessary (i.e., one can put λν = 1 for all
ν).

Remark 4. [1, P261] τ is actually independent of the choice of ω.
Suppose we have another left-invariant rational differential K-form ω′, it will

be written as a constant times the original ω, i.e., ω′ = cω for some c ∈ K∗,
then for every ν ∈ V K the corresponding measure ω′ν on Kν induced by ω′

is exactly ω′ν = ||c||nνων , where || ||ν is the normalized valuation introduced
in Section 5.1. Therefore the τ ′ associated to ω′ and the same convergence
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coefficients as τ , then τ ′ = (
∏
ν ||c||nν )τ = τ , the second equality is by product

formula in Proposition 1.

2 Results Needed from Measure Theory

Definition 3 (Resricted Topological Product). [1, P161] Let {Xλ}λ∈Lambda
be a family of locally compact topological spaces, indexed by a countable set
of indices Λ. Assume that open compact subsets Kλ ⊂ Xλ are fixed for almost
all λ ∈ Λ. Consider the space X whose elements are the families x = {xλ}λ∈Λ

where xλ ∈ Xλ, and xλ ∈ Kλ for almost all λ ∈ Λ. Introduce a topology on X,
taking for a fundamental system of open sets to be all sets of the form

∏
Uλ,

where Uλ ⊂ Xλ is open for all λ, and Uλ = Kλ for almost all λ. The space X
with this topology is called the restricted topological product of Xλ with respect
to the distinguished subsets Kλ.

Some straightforward properties of this construction.

Lemma 1. [1, P161]

1. For any finite subset S of Λ such that Kλ is defined for each λ ∈ Λ\S, put
XS =

∏
λ∈S Xλ ×

∏
λ∈Λ\S Kλ; then XS is open in X and the topology of

X induces the direct product topology on XS.

2. Each XS is locally compact and X = ∪SXS, where the union is taken
over all finite subsets S of Λ such that Kλ is given for each λ ∈ Λ\S;
consequently X is locally compact.

3. If {Gλ}λ∈Λ is a family of locally compact topological groups and open
compact subgroups Kλ of Gλ are given for almost all λ, then the restricted
topological product G of Gλ with respect to the Kλ is a locally compact
topological group.

2.1 The Construction of Haar Measure on the Restricted
Topological Product

By Lemma 1 (3) we know that G has a Haar measure, we will construct this
Haar measure from the Haar measures µλ on Gλ.

It is convenient to normalize µλ such that µλ(Kλ) = 1.
For any finite subset S ⊂ Λ such that Kλ is given for each λ ∈ Λ\S, one

has µS on GS =
∏
λ∈S Gλ ×

∏
λ∈Λ\S Kλ, µS = µ1 × µ2 where µ1 is the usual

finite product of µλ on
∏
λ∈S Gλ and µ2 is the Haar measure on the compact

group KS =
∏
λ∈Λ\S Kλ normalized by µ2(KS) = 1. It’s clear that if S1 ⊂ S2

then GS1 ⊂ GS2 , and the µS are consistent on the overlaps. Therefore, using
countable additivity and representing G as the countable union G = ∪SGS , we
obtain the desired µ on G.
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Remark 5. Sometimes, when defining µ, it will be useful to waive the condition
µλ(Kλ) = 1 and instead to require absolute convergence of

∏
µλ(Kλ) over all

λ for which Kλ is defined. Then the measure constructed above is replaced by
cµ, where c =

∏
µλ(Kλ).

Explicit examples of Haar measures can be obtained by integrating
differential forms.

2.2 How to Compute Explicit Left-Invariant Differential
Forms for Certain Algebraic Groups

Definition 4 (Differential Form). [1, P165] A differential form of degree n in
the neighborhood of x0 is an expression of the form ω = f(x)dx1∧dx2∧· · ·∧dxn,
where f is an analytic function in the neighborhood of x0, X 3 x0 is an analytic
variety over a complete field Kν . x1, · · · , xn are the local coordinates for a
neighborhood of x0.

Induced map on differential form
Suppose F : Y → X is an analytic map of two n-dimensional varieties,

y0 ∈ Y is a point satisfying F (y0) = x0, and y1, · · · , yn are local coordinates in
a neighborhood of y0. If F is given by

(y1, · · · , yn) 7→ (F (y1, · · · , fn), · · · , F (x1, · · · , xn))

then the induced map F ∗ acts on the differential form ω is defined to be

F ∗(ω) = f(F (y))dF1(y1, · · · , yn) ∧ · · · ∧ dFn(y1, · · · , yn)

ω and f are defined in Definition 4, dFi(y1, · · · , yn) =
∑n
j=1

∂Fi
∂yj

dyj

Definition 5. [1, P165] We say that a differential form ω is invariant with
respect to an analytic automorphism F : X → X if F ∗(ω) = ω.

Now let X be a smooth algebraic variety defined over K instead
of an analytic one

Definition 6. A K-defined system of local parameters in the neighborhood of
x0 of X is a system of K-rational functions x1, · · · , xn from X to A defined at
x0, such that the differential dx0ϕ of the rational map ϕ : X → An given by
ϕ : x 7→ (x1(x), · · · , xn(x)) is an isomorphism of tangent spaces.

Definition 7. [1, P166] An n-dimensional differential form over K in the
neighborhood of x0 is defined as an expression of the form ω = f(x)dx1∧· · · dxn
where f is a K-rational function on X.

Remark 6. The definition of induced map on differential forms (transformation
of differential forms) under rational map is similar to the one above.

Note that if X is defined over a complete field Kν and x ∈ XKν , then any
rational differential Kν-form in a neighborhood of x0 can also be viewed as an
analytic differential form on XKν in a neighborhood of x0.
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Computing explicit left-invariant differential forms for the alge-
braic groups GLn and SLn

Example 1 (G = GLn). [1, P166] For a system of local parameters, we can take
xij : G → A such that xij applied to a matrix X ∈ G is the i − j entry of the
matrix.

Let an n-dimensional differential form be ω = f(X)dx11 ∧ · · · ∧ dxnn. We
are going to use the left-invariant property of ω to determine f . The left action
is defined as:

λA : G→ G λA(X) = A ·X

ω being left invariant is equivalent to

λ∗A(ω) = ω ⇔ f(λA(X))dx′11 ∧ · · · ∧ dx′nn = f(X)dx11 ∧ · · · ∧ dxnn
⇔ f(AX)d(

∑
k

a1kxk1) ∧ · · · ∧ d(
∑
k

ankxkn) = f(X)dx11 ∧ · · · ∧ dxnn

d(
∑
k

aikxkj) =
∑
k

aikdxkj

therefore

d(
∑
k

a1kxk1) ∧ · · · ∧ d(
∑
k

ankxkn) = (detA)ndx11 ∧ · · · ∧ dxnn

λ∗A(ω) = ω ⇔ f(AX)(detA)n = f(X)

Let X = I the identity matrix, we have

f(A) = f(I)(detA)−n

and consequently, let c = f(I),

ω =
cdx11 ∧ · · · ∧ dxnn

(detX)n

Example 2 (G = SL2). [1, P166] For a system of local parameters in the
neighborhood of 1 we take the functions x, y, z associated to the corresponding

components of the matrix X =

(
x y
z t

)
∈ G, where t = 1+yz

x .

The left action is defined the same way as the previous example, and A =
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(
a b
c d

)
. The condition of ω being left invariant is equivalent to the following

f(AX)d(ax+ bz) ∧ d(ay + b
1 + yz

x
) ∧ d(cx+ dz) = f(X)dx ∧ dy ∧ dz

f(AX)(a2d+
abdz

x
− bac− b2zc

x
)dx ∧ dy ∧ dz = f(X)dx ∧ dy ∧ dz

f(AX)(a+
bz

x
) = f(AX)(

ax+ bz

x
) = f(X)

f(AX)(AX)11 = f(X)(X)11

f(A) =
f(I)

x

ω =
c

x
dx ∧ dy ∧ dz

Now we use another system of local coordinates on GR = SL2(R). According
to Iwasawa decomposition every matrix can be written uniquely as a product
of three matrices:(

cosϕ − sinϕ
sinϕ cosϕ

)
,

(
α 0
0 α−1

)
(α > 0),

(
1 u
0 1

)
Take ϕ, α, u as (analytic) coordinates on GR, the previous x, y, z has relations
with ϕ, α, u as follows:

x = α cosϕ, y = αu cosϕ− α−1 sinϕ, z = α sinϕ

By plugging in these to the previous formula for ω we get

ω =
f(I)

α cosϕ
(cosϕdα− α sinϕdϕ)

∧ [(u cosϕ− sinϕ

α2
)dα+ (−αu sinϕ+ α−1 cosϕ)dϕ+ α cosϕdu] ∧ (sinϕdα+ α cosϕdϕ)

=
c

α cosϕ
(α2 cos3 ϕ+ α2 cosϕ sin2 ϕ)dϕ ∧ dα ∧ du

= cαdϕ ∧ dα ∧ du

2.3 Determination of Measure Corresponding to a Differ-
ential Form

Let ω = f(x)dx1 ∧ · · · dxn be a nonzero local n-dimensional differential form in
some neighborhood of x0 in an n-dimensional analytic variety X. Then on this
neighborhood we can define the measure µ = |f(x)|ν |dx1|ν × · · · × |dxn|ν , it is
to say

µ(E) =

∫
E

|f(x)|ν |dx1|ν · · · |dxn|ν
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where |dx|ν is the (additive) Haar measure on Kν , it is the ordinary Lebesgue
measure if K = R or C, and in the ν-adic case it is normalized so that Oν has
measure 1.

If ω is defined over the entire variety X, then the local measure described
above extends to a measure on the entire variety. Denote the measure as ων [1,
P168]

Example 3 (G = SL2). [1, P168]
Let K = Q and ν the usual p-adic valuation. Let ωp be the measure on

SL2(Qp) corresponding to the differential form ω = 1
xdx ∧ dy ∧ dz.

To illustrate p-adic integration, we compute the volume of ωp(SL2(Zp))
under the measure ωp, i.e., ωp(SL2(Zp)). To do so, note that SL2(Zp) has prin-
ciple congruent subgroup SL2(Zp, p) which is the kernel of the map SL2(Zp)→
SL2(Fp), we have short exact sequence

0→ SL(Zp, p)→ SL2(Zp)→ SL2(Fp)→ 0

Since SL2(Fp) is finite, we have

ωp(SL2(Zp)) = |SL2(Fp)|ωp(SL2(Zp, p))

It’s easy to count the number of elements in SL2(Fp), it is p(p2 − 1). We only
need to compute the other term.

ωp(SL2(Zp, p)) =

∫
SL2(Zp,p)

| 1
x
|p|dx|p|dy|p|dz|p

Note that every matrix in SL2(Zp, p) has diagonal entries congruent to 1 mod
p, and off diagonal entries congruent to 0 mod p.
| 1x |p = 1 for all x ∈ SL2(Zp, p) since the 1,1 element of x is congruent to 1

mod p. Note that |dx|ν is the Haar measure on Kν , which means |dx|p is the
Haar measure µp on QP , therefore

ωp(SL2(Zp, p)) = | 1

x(SL2(Zp, p))
|p·µp(x(SL2(Zp, p)))·µp(y(SL2(Zp, p)))·µp(z(SL2(Zp, p)))

x(SL2(Zp, p)) = 1+
∑∞
i=1 aip

i, since µp is transitive invariant, µp(1+
∑∞
i=1 aip

i) =
µp(
∑∞
i=1 aip

i) = µp(pZp), similarly, µp(y(SL2(Zp, p))) = µp(z(SL2(Zp, p))) =
µp(pZp), therefore

ωp(SL2(Zp, p)) = 1 · p−1 · p−1 · p−1

So
ωp(SL2(Zp)) = p(p2 − 1)p−3 = 1− p−2

Remark 7. For general SLn, we have the following partial calculation:
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The dimension of SLn is n2 − 1, therefore ωp(SLn(Zp, p)) = p−n
2+1, and

|SLn(Fp)| = 1
p−1

∏n−1
i=0 (pn − pi), so

ωp(SL2(Zp)) =
p−n

2+1

p− 1
(pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1) (1)

=
p−n

2+1

p− 1
(pn − 1)p(pn−1 − 1)p2(pn−2 − 1) · · · pn−1(p− 1) (2)

= p−(n−1)(n+1)+(n−1)(pn − 1)p(pn−1 − 1)p2(pn−2 − 1) · · · pn−2(p2 − 1)
(3)

= p−n(n−1)p
(n−1)(n−2)

2 (pn − 1)(pn−1 − 1) · · · (p2 − 1) (4)

= p−
(n−1)(n+2)

2 (pn − 1)(pn−1 − 1) · · · (p2 − 1) (5)

= p−n(pn − 1)p−(n−1)(pn−1 − 1) · · · p−2(p2 − 1) (6)

Therefore ∏
p

ωp(SLn(Zp)) = ζ(2)−1ζ(3)−1ζ(4)−1 · · · ζ(n)−1 (7)

3 Computing the Tamagawa Number of SL2

3.1 Reduction Theory for GA relative to GK

Definition 8. Reduction Theory Finding fundamental domain with global
finiteness for lattices in Lie groups is called reduction theory.

Definition 9. Locally and Globally Finite A fundamental domain Ω for Γ in
X is called locally finite if for every x ∈ X, there exists a neighborhood U such
that U only meets finitely many Γ-translations of Ω. It is called globally finite
if {γ ∈ Γ|γΩ ∩ Ω 6= ∅} is finite.

Definition 10. [1, P163] A subset F ⊂ G is a fundamental domain with respect
to H if the restriction to F of the natural map π : G→ G/H is bijective. This
is equivalent to the following conditions:

1) G = FH

2) F ∩ Fh = ∅ for any h 6= e in H

2’) F ∩ Fh has measure 0, for any h 6= e in H

Definition 11. [1, P253] We call a subset Ω of GA a fundamental set for GK
if

(F1)A ΩGK = GA

(F2)A Ω−1Ω ∩GK is finite
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Theorem 1. [1, P253] Let G = GLn over Q and let Σ be the fundamental set
for GZ in GR. Then Ω = Σ×

∏
pGZp is a fundamental set for GQ in GA.

Partial proof. Let’s omit the proof of the fact that the class number of GLn,
cl(G) is 1. Recall the definition of class number is

Definition 12. [1, P251] We call the h in the following decomposition of GA
into double cosets the class number of G and denote it by cl(G).

GA =

h⋃
i=1

GA(∞)xiGK (8)

We want to show ΩGQ = GA. We know GA = GA(∞)AQ since cl(G) = 1.
Consider ΩGZ = (Σ ×

∏
pGZp)GZ = GR ×

∏
pGZp = GA(∞), therefore ΩGQ =

ΩGZGQ = GA(∞)GQ = GA.
Next we want to show that Ω−1Ω ∩ GQ if finite. Let g ∈ Ω−1Ω ∩ GQ,

g ∈ (Σ−1 ×
∏
pG
−1
Zp · Σ ×

∏
pGZp) ∩ GQ, meaning g embeds diagonally in this

intersection, thus g ∈ GZp . That means g ∈ GZ. The projection to the real
component gives g ∈ Σ−1Σ, since Σ is a fundamental set, we have the finiteness
as a consequence.

Remark 8. We want to make the same proof work the fundamental domain.
One important thing to note is that with the definition of fundamental set, we
can have the center of the group added onto Ω and it will still be a fundamental
set. But if the center has non-zero measure, then it won’t be a fundamental
domain. Let’s recall the definition for fundamental domain.

Claim 1. Let G = SL2 over Q and let Σ be a fundamental domain for GZ in
GR. Then Ω = Σ×

∏
pGZp is a fundamental domain for GQ in GA.

Proof. We use the fact that cl(SL2) = 1. may need more care. One thought
(perhaps wrong) is that µ(Ω∩Ωh) = ω∞(Σ∩Σh) ·

∏
p ωp(GZp ∩GZph), since Σ

is a fundamental domain, and the
∏
p converges absolutely, the right hand side

is 0.

3.2 The Computation

Using all the tools we have obtained, we can go ahead and compute the Tama-
gawa number of SL2.

By the Remark 2, we can concentrate on Q instead of arbitrary number field
K. So let G = SL2 over Q. We would like to compute the invariant volume of
SL2(A)/SL2(Q), it is fortunate for us that we can do this through finding and
integrating over the fundamental domain in SL2(A) of SL2(Q). Let F be the
fundamental domain in SL2(R) of SL2(Z), by Claim 1 we have

τ(SL2) = ω∞(F )×
∏
p

ωp(SL2(Zp)) (9)
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By Example 3, we know∏
p

ωp(SL(Zp)) =
∏
p

(1− p−2) = ζ(2)−1 (10)

It remains to calculate F and ω∞(F ). Consider the Iwasawa decomposition
mentioned in Example 2 and the differential form determined by these coordi-
nates. Therefore the volume of SL2(R)/SL2(Z) is expressed by∫

F

α dϕ dα du (11)

We shall construct F . To do so, we can think of F as the fundamental domain
of SL2(Z) acting as a discrete transformation group on SL2(R). That leads us
naturally to thinking about the fundamental domain of SL2(Z) acting on the
upper half plane H ∼= SL2(R)/SO2(R). That is the well-known fundamental
domain

D = {z ∈ SL2(R)/SO2(R) : |Re(z)| ≤ 1

2
, |z| ≥ 1} (12)

Let the projection map ϕ : SL2(R)→ H be

ϕ :

(
x y
u t

)
7→ ti+ y

ui+ x
(13)

Then it is easy to see that for F we may take F = K0D0, where

K0 = {
(

cosϕ − sinϕ
sinϕ cosϕ

)
: ϕ ∈ [0, π]} (14)

D0 = {
(
a 0
0 a−1

)(
1 u
0 1

)
: a > 0, ϕ

(
a au
0 a−1

)
∈ D} (15)

A simple calculation shows that

a > 0, ϕ

(
a au
0 a−1

)
∈ D ⇔ |u| ≤ 1

2
, 0 ≤ a ≤ 1

2
√

1− u2
(16)

Therefore the volume of SL2(R)/SL2(Z) is

ω∞(SL2(R)/SL2(Z)) =

∫ π

0

dϕ

∫ 1/2

−1/2

du

∫ 1/ 4√1−u2

0

α dα =
π2

6
= ζ(2) (17)

By equation 9 we have

τ(SL2) = ζ(2)× ζ(2)−1 = 1 (18)

4 Some General Results

4.1 Tamagawa Number of SLn

Theorem 2. [2, Theorem 14.4]

ω∞(SLn(R)/SLn(Z)) = ζ(2)ζ(3) · · · ζ(n) (19)

Combining this theorem with Example 7, we can see that τ(SLn) = 1.
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4.2 Tamagawa Number for Reductive Groups

[1, P263] The definition of Tamagawa numbers requires some modification for
reductive groups, since for many cases important in applications (such as the
1-dimensional split torus Gm) the volume GA/GK is infinite. This leads us to
think of other homogeneous spaces that are closely related to adele groups but
have finite invariant volume. Since the obstruction to the finiteness of the vol-
ume of GA/GK comes from the existence of non-trivial K-characters [1, Theo-
rem 5.5], we associate each character χ ∈ X(G)K the continuous homomorphism
cK(χ) : GA → R>0 given by

cK(χ)((gν)) =
∏
ν

|χ(gν)|ν (20)

Then we define
G

(1)
A =

⋂
χ∈X(G)K

ker cK(χ) (21)

We have the following theorem

Theorem 3. Let G be a connected K-group. Then G
(1)
A is unimodular and

G
(1)
A /GK has finite invariant volume.

4.3 Weil Conjecture

[1, P263]

Theorem 4. If G is semi-simple simply connected, then τ(G) = 1.

Weil developed a method of computing Tamagawa numbers using induction,
the residues of some analogs of the zeta function, and the Poisson summation
formula. This method allows one to prove Weil conjecture for many classical
groups and some exceptional groups. Later Mars computed the Tamagawa num-
ber for unitary groups of type An and thereby completed the proof of the Weil
conjecture for classical semi-simple groups over number fields. A unified proof
of the conjecture for Chevalley groups was given by Langlands 1966. Lai 1976,
1980 computed τ(G) for G quasi-split. A complete proof of the conjecture was
obtained by Kottwitz 1988 modulo the validity of the Hasse principle for Ga-
lois cohomology of simply connected semisimple algebraic groups. Chernousov
1989, completed the proof of this Hasse principle for groups of type E8, Thus
Weil conjecture has been proved.

Why do we care about simply connected group? See the following elegant
result:

Let G be a semi-simple K-group, let π : G̃→ G be the universal K-covering,
let F = kerπ be the fundamental group of G, and X(F ) be its group of charac-
ters. Then

τ(G) = τ (̃(G))
h0(X(F ))

i1(X(F ))
(22)
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where
h0(X(F )) = [H0(K,X(F ))] = [X(F )K ] (23)

and i1(X(F )) is the order of the kernel of the canonical map H1(K,X(F )) →∏
ν H

1(Kν , X(F )). Thus it is suffice to compute τ(G) for G simply connected.

5 Some Definitions and Well Known Facts

Definition 13 (Module of G). [1, P159] For x ∈ G, let ∆G(x) denote the mod-
ule of the corresponding inner automorphism Inn(x) : g 7→ xgx−1. The function
∆G : G→ R+ is called the module of G and is a continuous homomorphism.

Definition 14 (Unimodular). [1, P160] If ∆G ≡ 1 then G is said to be uni-
modular.

Remark 9. It is the uniqueness of Haar measure that enable us to define the
module. On the other hand, the unimodularity is rather a property of G than
of the Haar measure µ.

Definition 15. Let X be a topological space, X is called locally compact if
every point of X has a compact neighborhood.

Example 4. The real field R is locally compact. p-adic numbers Qp is locally
compact because it is homeomorphic to the Cantor set (which is compact) minus
one point. The rational numbers Q (provided to topology from R) is not locally
compact.

Remark 10. Locally compact groups are important because they have a natural
measure called the Haar measure.

Theorem 5. [1, P159] Let G be a locally compact group. Then there is a left
(right) Haar measure on G, which is unique up to multiplication by a positive
constant.

Remark 11. Note that if µ is a left Haar measure on G, then µ̂, given by
µ̂(X) = µ(X−1) for all X ⊂ G such that X−1 is µ-measurable, is a right Haar
measure on G. Therefore the assertion above for left and right Haar measures
are equivalent.

5.1 Adeles, approximation, local-global principle

Proposition 1 (Product Formula). [1, P12] For any a ∈ K∗, we have
∏
ν∈V K |a|nνν =

1, where nν = [Kν : Qp] (same definition if change Qp into R) is the local dimen-
sion with respect to the p-adic valuation | |ν . Normalization gives ||a||ν = |a|nνν
and the product formula can be stated more elegantly as

∏
ν∈V K ||a||ν = 1.
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6 Notations

• K will always be an algebraic number field, i.e., a finite extension of Q

• Kν is the completion of K with respect to a valuation | |ν

• Oν is the ring of integers in Kν .

• V K is the equivalent classes of valuations on K

• V Kf is the set of non-archimedean valuations obtained as extensions of the

p-adic valuation | |p of Q, for each prime number p. V K∞ is the archimedean
valuation, | |∞ is the ordinary absolute value on Q.

Remark 12. V K = V Kf ∪ V K∞ ∪ | |∞

• ω denotes a rational differential K-form

• ων is the left-invariant measure induced by ω on GKν for every ν ∈ V K
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